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1. Introduction

In [B], Boratynski proved the following theorem:

THEOREM 1.1. Let A be a commutative ring and I be an ideal with I =
(f1, . . . , fn)+I 2. Let J = (f1, . . . , fn−1)+I (n−1)!. Then J is image of a projective
module P of rank n.

This theorem of Boratynski had a far-reaching impact in the study of complete
intersections in affine varieties (see [Ma1],[MK],[Mu], to mention a few). In this
paper we give some applications of this theorem of Boratynski.

Mohan Kumar ([MK]) used it to prove the following theorem:

THEOREM 1.2. Let A be a reduced affine ring of dimension n over an algebra-
ically closed field k, and let Q be a projective A-module of rank n. Suppose that
Q maps onto a complete intersection ideal J = (f1, . . . , fn) of height n. Then
Q ≈ Q0 ⊕ A.

One of the main results in this paper is the following theorem:

THEOREM 1.3. Let A be a Noetherian commutative ring. Let r1, . . . , rn be non-
negative integers and n� dim(A). Let f1, . . . , fn be a regular sequence in A.
Suppose Q is a projective A-module of rank n. Suppose we have a surjective
map ϕ : Q → (f

r1
1 , . . . , f rn

n ) and r1r2 . . . rn is divisible by (n − 1)!. Then [Q] =
[Q0 ⊕ A] in K0(A), for some projecive A-module Q0.

Further, if n = dim(A) is odd, A is Cohen–Macaulay and Q has trivial determ-
inant, then Q ≈ Q0 ⊕ A.
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In fact, we give a more general theorem on such decomposition of projective
modules as follows.

THEOREM 1.4. Let A be a Noetherian commutative ring. Let r1, . . . , rn be pos-
itive integers and n� dim(A). Let J0 = (f1, . . . , fn) + J 2

0 be a locally complete
intersection ideal of height n. Define

J1 = (f2, . . . , fn)+ J
r1
0 ,

J2 = (f
r1
1 , f3, . . . , fn)+ J

r2
1 ,

and so on, and

J = Jn = (f
r1
1 , . . . , f

rn−1
n−1 )+ J

rn
n−1.

(Then J = (f
r1

1 , . . . , f rn
n ) + J 2). Suppose that Q is a projective A-module of

rank n and there is a surjective map ϕ : Q → J . Assume that (n − 1)! divides
r1r2 . . . rn. Then

[Q] = [Q0 ⊕ A] − r1 . . . rn

(n− 1)!
[A/J0] in K0(A),

for some projective A-module Q0 of rank n − 1.

These results in this paper are extensions of some of the results in [Ma1] and
[Mu]. In this paper, A will always denote a commutative Noetherian ring and
K0(A) will denote the Grothendieck Group of projective A-modules of finite rank.

2. Some Computations in the KKK-Groups

LEMMA 2.1. Let A be a Noetherian commutative ring and let J0 be an ideal. Sup-
pose J0 = (f1, f2, . . . , fn)+J 2

0 and r1, r2, . . . , rn be nonnegative integers. Define
J1 = (f2, f3, . . . , fn) + J

r1
0 and J2 = (f

r1
1 , f3, . . . , fn) + J

r2
1 , and inductively

define

Jk = (f
r1
1 , . . . , f

rk−1
k−1 , fk+1, . . . , fn)+ J

rk
k−1.

Then

Jn = (f
r1
1 , f

r2
2 , . . . , f rn

n )+ J 2
n .

Proof. First, recall that for an ideal J, J = (x1, x2, . . . , xn)+ J 2 if and only if
Jt = (x1, x2, . . . , xn) for some t with J + At = A.

We will prove, inductively, that

Jk = (f
r1
1 , f r−2

2 , . . . , f
rk
k , fk+1, . . . , fn)+ J 2

k .

It is enough to show the inductive step. So, we assume that

Jk−1 = (f
r1
1 , . . . , f

rk−1
k−1 , fk, . . . , fn)+ J 2

k−1.
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Write I = Jk−1 and J = Jk. So, we have It = (f
r1
1 , . . . , f

rk−1
k−1 , fk, . . . , fn) for

some t with I + At = A. Therefore,

Jt = (f
r1

1 , f
r2

2 , . . . , f
rk−1
k−1 , fk+1, . . . , fn)+ I

rk
t

= (f
r1

1 , . . . , f
rk
k , fk+1, . . . , fn).

This finishes the proof.

LEMMA 2.2. Let A be a commutative Noetherian ring and J be an ideal. Suppose

J = (f
r1
1 , f

r2
2 , . . . , f rn

n )+ J 2

for some f1, f2, . . . , fn in A. Then there are ideals

J = Jn ⊆ Jn−1 ⊆ Jn−2 ⊆ · · · ⊆ J0,

where

Jk = (f
r1
1 , . . . , f

rk−1
k−1 , fk+1, . . . , fn)+ J

rk
k−1

for k = 1, 2, . . . , n and

J0 = (f1, f2, . . . , fn)+ J 2
0 .

Proof. There is an element s ∈ J such that (1+ s)J ⊆ (f
r1
1 , f

r2
2 , . . . , f rn

n ). Let
J0 = (f1, f2, . . . , fn, s). The rest of the lemma follows easily.

LEMMA 2.3. Let A be a noetherian commutative ring and I be an ideal of height
n. Suppose that I = (f1, f2, . . . , fn) + I 2 for some f1, f2, . . . , fn and let J =
(f1, f2, . . . , fn−1)+I r for some positive integer r. If I is locally complete intersec-
tion ideal then J is also a locally complete intersection ideal and [A/J ] = r[A/I ]
in K0(A).

Conversely, if J is a locally complete intersection ideal then so is I.
Proof. First, assume that I is a locally complete intersection ideal of height n.

We will find a regular sequence g1, . . . , gn such that gi−fi ∈ I r .We will do this by
induction. Suppose we have already picked a regular sequence g1, . . . , gk such that
gi − fi ∈ I r for i = 1 to k and k < n. Note that I = (g1, . . . , gk, fk+1, . . . , fn)+
I 2. Supose that ℘1, . . . , ℘j , P1, . . . , Pl are maximal among the associated primes
of (g1, . . . , gk) such that fk+1 is in ℘1, . . . , ℘j and not in P1, . . . , Pl. Also from
the I -depth consideration (for example, see [K], Chapter VI, 3.1, pp. 183), it fol-
lows that I is not contained in these associate primes. Now let

λ ∈ I r ∩ P1 · · · ∩ Pl\℘1 ∪ ℘2 ∪ · · · ∪ ℘j .

Now let gk+1 = fk+1 + λ. Then g1, . . . , gk, gk+1 is a regular sequence. So, by
induction we can find a regular sequence g1, . . . , gn such that gi − fi ∈ I r for
i = 1 to n.
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So, we have I = (g1, . . . , gn) + I 2 and J = (g1, . . . , gn−1) + I r . Since J is
locally defined by g1, . . . , gn−1, g

r
n, we have J is a locally complete intersection

ideal.
For positive integers k, define Jk = (g1, . . . , gn−1) + I k. Consider the exact

sequences

0 → Jk/Jk+1 → A/Jk+1 → A/Jk → 0.

Also note that the map gkn : A/I → Jk/Jk+1 defines an isomorphism. So, it follows
that [A/J ] = [A/Jr ] = r[A/I ].

To prove the converse, we consider the J -depth and follow the same proof.

LEMMA 2.4. Let A be commutative Noetherian ring and

J0 = (f1, f2, . . . , fn)+ J 2
0

be a locally complete intersection ideal of height n. For k = 1 to n let

Jk = (f
r1
1 , . . . , f

rk−1
k−1 , fk+1, . . . , fn)+ J

rk
k−1.

Then Jn is a locally complete intersection ideal and [A/Jn] = r1r2 . . . rn[A/J0] in
K0(A).

Proof. The proof follows from the above Lemma 2.3.

THEOREM 2.1. Let k = Z or a field and let

K = K(k) = k[S, T ,U, V ]

(SU + T V − 1)
,

A = An(k) = k[S, T ,U, V,X1, . . . , Xn, Y1, . . . , Yn]

(SU + T V − 1, X1Y1 + · · · +XnYn − ST )
.

The images of ‘upper-case-letters elements’ in A will be denoted by the cor-
responding ‘lower-case-letters’. Now let J0 = (x1, . . . , xn, t). Let r1, . . . , rn be
positive integers. For k = 1 to n define

Jk = (x
r1
1 , . . . , x

rk−1
k−1 , xk+1, . . . , xn)+ J

rk
k−1.

Write J = Jn. Then

J = (x
r1
1 , x

r2
2 , . . . , x

rn
n )+ J 2.

Assume r1r2 . . . rn, is divisible by (n− 1)!. Then there is a projective A-module
P of rank n such that P maps onto J and

[P ] − n = −r1r2 . . . rn

(n− 1)!
[A/J0] inK0(A).

Proof. It follows that Js is generated by (xr1
1 , . . . , x

rn
n ). Since (xr1

1 , . . . , x
rn
n ) is a

unimodular row in Ast , by Suslin’s theorem ([S] or see [Ma2]), there is an invertible
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matrix α in Mn(Ast ) with the transpose of (xr1
1 , . . . , x

rn
n ) as it’s first column. We

can assume that α is in Mn(A) with det(α) = (st)u for some positive integer
u. Now let f1 : An

s → Js be the map defined by sending the standard basis to
(x

r1
1 , . . . , x

rn
n ). Also let f2 : An

t → Jt be the map defined by sending the standard
basis to (1, 0, . . . , 0). Now by patching f1 and f2 by α we can can find a projective
A-module P that maps onto J .

Let λ = [A/(x1, . . . , xn, t)] in K0(A). In [Ma1], we proved that K0(A) is freely
generated by [A] and λ. So we have, [P ] − n = mλ for some integer m. We also
have seen in [Ma1] that the Chow group CHn(A) of codimension n-cycles is freely
generated by the cycle λ′ = [V (J0)] defined by J0. We have, the nth Chern class

Cn([P ] − n) = (−1)n[V (J )] = (−1)nr1 . . . rnλ
′

and by Riemann–Roch theorem

Cn([P ] − n) = mCn(λ) = m(−1)n−1(n − 1)!λ′.

So, m = −(r1 . . . rn)/(n− 1)! and the proof is complete.

3. The Main Results

The following theorem is an extension of one of the main theorems in [Ma1]:

THEOREM 3.1. Let A be a Noetherian commutative ring. Suppose J0 is a locally
complete intersection ideal of height n� dim(A) and I is an ideal with I+J0 = A.

Assume that both J0 and I contain nonzero divisors and

J0 = (f1, . . . , fn)+ J 2
0 .

For positive integers r1, . . . , rn define (as in Lemma 2.1)

J1 = (f2, . . . , fn)+ J
r1
0 ,

J2 = (f
r1
1 , f3, . . . , fn)+ J

r2
1 ,

. . . . . . . . .

J = Jn = (f
r1
1 , . . . , f

rn−1
n−1 )+ J

rn
n−1.

Suppose Q is a projective A-module of rank n and ϕ : Q → IJ is a surjective
map. Assume that (n − 1)! divides r1r2 . . . rn. Then

(1) There is a porjective A-module P of rank n that maps onto J and

[P ] − n = −r1r2 . . . rn

(n− 1)!
[A/J0] inK0(A).

(2) There is a surjective map ψ : Q⊕ An → I ⊕ P .
(3) There is a projective A-module Q′ of rank n that maps onto I with

[Q′] = [Q] + r1r2 . . . rn

(n − 1)!
[A/J0] inK0(A).
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Proof. The proof is very similar to that of Theorem 3.1 in [Ma1]. We will only
give a sketch of the proof.

Using some prime avoidance arguments, we can find a nonzero divisor s ∈ A

and a free basis e1, . . . , en ofQs such that, possibly after modifying f1, f2, . . . , fr ,
we have the following:

(1) s ∈ I and su + t = 1 for some t ∈ J0 and u ∈ A.

(2) sJ0 ⊆ (f1, . . . , fn). So, st = g1f1 + · · · + gnfn for some g1, . . . , gn in A.

(3) ϕ(e1) = f
r1
1 , . . . , ϕ(rn) = f rn

n .

(4) We also have skQ ⊆ Ar = ⊕n
i=1Aei.

(5) By replacing Q by skQ and I by skI , we have sk+1 ∈ I.

(6) Also, there is an inclusion map i : Q → Ar = ⊕n
i=1Aei such that Qs = An

s .

It is fairly simple to achieve the above in case when A is an integral domain.
Now let An(Z) be as in Theorem 2.1 and consider the natural map An(Z) → A that
sends Xi to fi , Yi to gi and T to t , S to s, U to u and V to 1. By Suslin’s theorem
(see [Ma2]) there is a matrix γ ∈ Mn(An) with det(γ ) = slkl and transpose of
(x

r1
1 , . . . , x

rn
n ) as it’s first column.

Let α ∈ Mn(A) be the image of γ . We consider α as a map α : An → An and
let α0 : Q → Ar be the restriction of α.

Now we construct P as in Theorem 2.1, by patching An
s and An

t , via αst . It
follows that

[P ] − n = − r1 . . . rn

(n − 1)!
[A/J0]

because it is the image of the corresponding equation in Theorem 2.1.
Now we have the following observations:

(1) There is an exact sequence

0 → K → P → J → 0.

And K/slK is free of rank n − 1, for any positive integer l.
(2) There is an exact sequence

0 → L → P ⊕ I → J + I = A → 0.

(3) There is a surjective map g : P → J and L ≈ g−1(IJ ).

(4) There is a surjective map Q⊕ An−1 → L.

(5) So, there is a surjective map Q⊕ An → I ⊕ P and (2) is estblished.
(6) The proof of (3) follows from (2).

This finishes the sketch of the proof of Theorem 3.1.

The following theorems on decomposition of projective modules are conse-
quences of the above theorem.
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THEOREM 3.2. Let A be a Noetherian commutative ring and let f1, f2, . . . , fn
be a regular sequence with n� dim(A). Suppose that r1, . . . , rn are positive in-
tegers so that (n − 1)! divides r1r2 . . . rn. Suppose Q is a projective A-module
of rank n and there is a surjective map ϕ : Q → (f

r1
1 , f

r2
2 , . . . , f rn

n ). Then
[Q] = [Q0]+1 in K0(A) for some projective A-module Q0 of rank n−1. Further,
if n = dim(A) is odd, A is Cohen–Macaulay and Q has trivial determinant then
Q ≈ Q0 ⊕ A.

Proof. To prove the first part of the theorem, we apply the above theorem (3.1)
with J0 = (f1, . . . , fn) and I = A. By (3) of Theorem 3.1, there is a projective
A-module Q′ of rank n that maps onto A and

[Q′] = [Q] + r1r2 . . . rn

(n − 1)!
[A/J0].

So, Q′ ≈ Q0 ⊕A for some projective A-module Q0 of rank n−1. Since [A/J0] =
0, we have [Q0] + 1 = [Q].

Now, the latter part follows from [RS], Theorem 4.2.

THEOREM 3.3. Let A be a Noetherian commutative ring. Suppose

J0 = (f1, . . . , fn)+ J 2
0

is a locally complete intersection ideal of height n and

J = Jn = (f
r1
1 , . . . , f rn

n )+ J 2

is defined as in the above Theorem 3.1. Let Q be a projective A-module of rank
n and let ϕ : Q → J be a surjective map. Assume that r1r1 . . . rn is divisible by
(n− 1)!. Then

[Q] = [Q0 ⊕ A] − r1 . . . rn

(n− 1)!
[A/J0]

in K0(A) for some projective A-module Q0 of rank n − 1. In particular, if
[A/J0] = 0 then [Q] = [Q0 ⊕ A].

Proof. By Theorem 3.1, with I = A there is a surjective map ψ : Q ⊕ An →
A⊕ P where P is a projective A-module of rank n with

[P ] − n = − r1 . . . rn

(n − 1)!
[A/J0].

The theorem follows with Q0 = ker(ψ).
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