ANOTHER DEFINITION OF AN EULER CLASS GROUP OF A NOETHERIAN RING

MANOJ K. KESHARI AND SATYA MANDAL

1. Introduction. All the rings are assumed to be commutative Noetherian and all the modules are finitely generated.

Let A be a ring of dimension $n \geq 2$, and let L be a projective A-module of rank 1. In [3], Bhatwadekar and Sridharan defined an abelian group, called the Euler class group of A with respect to L which is denoted by $E(A, L)$. To the pair (P, χ), where P is a projective A module of rank n with determinant L and $\chi: L \xrightarrow{\sim} \wedge^{n} P$ an isomorphism, called an L-orientation of P, they attached an element of $E(A, L)$ which is denoted by $e(P, \chi)$. One of the main result in [3] is that P has a unimodular element if and only if $e(P, \chi)$ is zero in $E(A, L)$.

We will define the Euler class group of A with respect to a projective A-module $F=Q \oplus A$ of rank n, denoted by $E(A, F)$. To the pair (P, χ), where P is a projective A-module of rank n and $\chi: \wedge^{n} F \xrightarrow{\sim} \wedge^{n} P$ is an isomorphism, called an F-orientation of P, we associate an element of the Euler class group, denoted by $e(P, \chi)$ and prove the following result: P has a unimodular element if and only if $e(P, \chi)$ is zero in $E(A, F)$. Note that, when $F=L \oplus A^{n-1}, E(A, F)$ is the same as the Euler class group $E(A, L)$ defined in [3].
2. Preliminaries. Let A be a ring, and let M be an A-module. For $m \in M$, we define $O_{M}(m)=\left\{\varphi(m) \mid \varphi \in \operatorname{Hom}_{A}(M, A)\right\}$. We say that m is unimodular if $O_{M}(m)=A$. The set of all unimodular elements of M will be denoted by $\operatorname{Um}(M)$. Note that, if a projective A-module P has a unimodular element, then $P \xrightarrow{\sim} P_{1} \oplus A$.

Let P be a projective A-module. Given an element $\varphi \in P^{*}$ and an element $p \in P$, we define an endomorphism φ_{p} as the composite

[^0]$P \xrightarrow{\varphi} A \xrightarrow{p} P$. If $\varphi(p)=0$, then $\varphi_{p}^{2}=0$ and hence $1+\varphi_{p}$ is a unipotent automorphism of P.

By a transvection, we mean an automorphism of P of the form $1+\varphi_{p}$, where $\varphi(p)=0$ and either φ is unimodular in P^{*} or p is unimodular in P. We denote by EL (P) the subgroup of $\operatorname{Aut}(P)$ generated by all the transvections of P. Note that EL (P) is a normal subgroup of Aut (P).

Recall that, if A is a ring of dimension n and if P is a projective A-module of rank n, then any surjection $\alpha: P \rightarrow J$ is called a generic surjection of P if J is an ideal of A of height n.

The following result is due to Bhatwadekar and Roy ([2, Proposition 4.1]):

Proposition 2.1. Let B be a ring, and let I be an ideal of B. Let P be a projective B-module. Then any element of $\mathrm{EL}(P / I P)$ can be lifted to an automorphism of P.

We state some results from [3] for later use.

Lemma 2.2 [3, Lemma 3.0]. Let A be a ring of dimension n, and let P be a projective A-module of rank n. Let $\lambda: P \rightarrow J_{0}$ and $\mu: P \rightarrow J_{1}$ be two surjections, where J_{0} and J_{1} are ideals of A of height n. Then there exists an ideal I of $A[T]$ of height n and a surjection $\alpha(T): P[T] \rightarrow I$ such that $I(0)=J_{0}, I(1)=J_{1}, \alpha(0)=\lambda$ and $\alpha(1)=\mu$.

For a rank 1 projective A-module L and $P^{\prime}=L \oplus A^{n-1}$, the following result is proved in [3, Proposition 3.1]. Since the same proof works in our case, we omit the proof.

Proposition 2.3. Let A be a ring of dimension $n \geq 2$ such that $(n-1)!$ is a unit in A. Let P and $P^{\prime}=Q \oplus A$ be projective A-modules of rank n, and let $\chi: \wedge^{n} P \xrightarrow{\sim} \wedge^{n} P^{\prime}$ be an isomorphism. Suppose that $\alpha(T): P[T] \rightarrow I$ is a surjection, where I is an ideal of $A[T]$ of height n. Then there exists a homomorphism $\phi: P^{\prime} \rightarrow P$, an ideal K of A of height $\geq n$ which is comaximal with $(I \cap A)$ and a surjection $\rho(T): P^{\prime}[T] \rightarrow I \cap K A[T]$ such that the following holds:
(i) $\wedge^{n}(\phi)=u \chi$, where $u=1$ modulo $I \cap A$.
(ii) $(\alpha(0) \circ \phi)\left(P^{\prime}\right)=I(0) \cap K$.
(iii) $(\alpha(T) \circ \phi(T)) \otimes A[T] / I=\rho(T) \otimes A[T] / I$.
(iv) $\rho(0) \otimes A / K=\rho(1) \otimes A / K$.

Theorem 2.4 (Addition principle [3, Theorem 3.2]). Let A be a ring of dimension $n \geq 2$, and let J_{1}, J_{2} be two comaximal ideals of A of height n. Let $P=P_{1} \oplus A$ be a projective A-module of rank n, and let $\Phi: P \rightarrow J_{1}$ and $\Psi: P \rightarrow J_{2}$ be two surjections. Then, there exists a surjection $\Theta: P \rightarrow J_{1} \cap J_{2}$ such that $\Phi \otimes A / J_{1}=\Theta \otimes A / J_{1}$ and $\Psi \otimes A / J_{2}=\Theta \otimes A / J_{2}$.

Theorem 2.5 (Subtraction principle [3, Theorem 3.3]). Let A be a ring of dimension $n \geq 2$, and let J and J^{\prime} be two comaximal ideals of A of height $\geq n$ and n, respectively. Let P and $P^{\prime}=Q \oplus A$ be projective A-modules of rank n, and let $\chi: \wedge^{n} P \xrightarrow{\sim} \wedge^{n} P^{\prime}$ be an isomorphism. Let $\alpha: P \rightarrow J \cap J^{\prime}$ and $\beta: P^{\prime} \rightarrow J^{\prime}$ be surjections. Let "bar" denote reduction modulo J^{\prime}, and let $\bar{\alpha}: \bar{P} \rightarrow J^{\prime} / J^{\prime 2}$ and $\bar{\beta}: \overline{P^{\prime}} \rightarrow J^{\prime} / J^{\prime 2}$ be surjections induced from α and β, respectively. Suppose there exists an isomorphism $\delta: \bar{P} \xrightarrow{\sim} \overline{P^{\prime}}$ such that $\bar{\beta} \delta=\bar{\alpha}$ and $\wedge^{n}(\delta)=\bar{\chi}$. Then there exists a surjection $\theta: P \rightarrow J$ such that $\theta \otimes A / J=\alpha \otimes A / J$.

Lemma 2.6 [3, Proposition 6.7]. Let A be a ring of dimension n, and let P, P^{\prime} be stably isomorphic projective A-modules of rank n. Then there exists an ideal J of A of height $\geq n$ such that J is a surjective image of both P and P^{\prime}. Further, given any ideal K of height ≥ 1, J can be chosen to be comaximal with K.

We state the following result from [1, Proposition 2.11] for later use.

Proposition 2.7. Let A be a ring, and let I be an ideal of A of height n. Let $f \in A$ be a non-zerodivisor modulo I, and let $P=P_{1} \oplus A$ be a projective A-module of rank n. Let $\alpha: P \rightarrow I$ be a linear map such that the induced map $\alpha_{f}: P_{f} \rightarrow I_{f}$ is a surjection. Then, there exists $\Psi \in \mathrm{EL}\left(P_{f}^{*}\right)$ such that:
(i) $\beta=\Psi(\alpha) \in P^{*}$ and
(ii) $\beta(P)$ is an ideal of A of height n contained in I.
3. Euler class group $E(A, F)$. Let A be a ring of dimension $n \geq 2$, and let $F=Q \oplus A$ be a projective A-module of rank n. We define the Euler class group of A with respect to F as follows:

Let J be an ideal of A of height n such that J / J^{2} is generated by n elements. Let α and β be two surjections from $F / J F$ to J / J^{2}. We say that α and β are related if there exists an automorphism σ of $F / J F$ of determinant 1 such that $\alpha \sigma=\beta$. Clearly, this is an equivalence relation on the set of all surjections from $F / J F$ to J / J^{2}. Let $[\alpha]$ denote the equivalence class of α. We call $[\alpha]$ a local F-orientation of J.

Since $\operatorname{dim} A / J=0, \mathrm{SL}_{A / J}(F / J F)=\mathrm{EL}(F / J F)$ and, therefore, by (2.1), the canonical map from $\mathrm{SL}_{A}(F)$ to $\mathrm{SL}_{A / J}(F / J F)$ is surjective. Hence, if a surjection $\alpha: F / J F \rightarrow J / J^{2}$ can be lifted to a surjection $\Delta: F \rightarrow J$, then so can any other surjection β equivalent to α.
A local F-orientation $[\alpha]$ is called a global F-orientation of J if the surjection α can be lifted to a surjection from F to J. From now on, we shall identify a surjection α with the equivalence class $[\alpha]$ to which α belongs.

Let \mathcal{M} be a maximal ideal of A of height n, and let \mathcal{N} be an \mathcal{M} primary ideal such that $\mathcal{N} / \mathcal{N}^{2}$ is generated by n elements. Let $w_{\mathcal{N}}$ be a local F-orientation of \mathcal{N}. Let G be the free abelian group on the set of pairs $\left(\mathcal{N}, w_{\mathcal{N}}\right)$, where \mathcal{N} is a \mathcal{M}-primary ideal and $w_{\mathcal{N}}$ is a local F-orientation of \mathcal{N}.

Let $J=\cap \mathcal{N}_{i}$ be the intersection of finitely many \mathcal{M}_{i}-primary ideals, where \mathcal{M}_{i} are distinct maximal ideals of A of height n. Assume that J / J^{2} is generated by n elements, and let w_{J} be a local F-orientation of J. Then w_{J} gives rise, in a natural way, to local F-orientations $w_{\mathcal{N}_{i}}$ of \mathcal{N}_{i}. We associate to the pair $\left(J, w_{J}\right)$, the element $\sum\left(\mathcal{N}_{i}, w_{\mathcal{N}_{i}}\right)$ of G.

Let H be the subgroup of G generated by the set of pairs $\left(J, w_{J}\right)$, where J is an ideal of A of height n and w_{J} is a global F-orientation of J.

We define the Euler class group of A with respect to F, denoted by $E(A, F)$, as the quotient group G / H.
Let P be a projective A-module of rank n, and let $\chi: \wedge^{n} F \xrightarrow{\sim} \wedge^{n} P$ be an isomorphism. We call χ an F-orientation of P. To the pair (P, χ), we associate an element $e(P, \chi)$ of $E(A, F)$ as follows:

Let $\lambda: P \rightarrow J_{0}$ be a generic surjection of P and let "bar" denote reduction modulo the ideal J_{0}. Then, we obtain an induced surjection $\bar{\lambda}: \bar{P} \rightarrow J_{0} / J_{0}^{2}$. Since $\operatorname{dim} A / J_{0}=0$, every projective A / J_{0}-module of constant rank is free. Hence, we choose an isomorphism $\bar{\gamma}$: $F / J_{0} F \xrightarrow{\sim} P / J_{0} P$ such that $\wedge^{n}(\bar{\gamma})=\bar{\chi}$. Let $w_{J_{0}}$ be the local F orientation of J_{0} given by $\bar{\lambda} \circ \bar{\gamma}: F / J_{0} F \rightarrow J_{0} / J_{0}^{2}$. Let $e(P, \chi)$ be the image in $E(A, F)$ of the element $\left(J_{0}, w_{J_{0}}\right)$ of G. We say that $\left(J_{0}, w_{J_{0}}\right)$ is obtained from the pair (λ, χ). We will show that the assignment sending the pair (P, χ) to the element $e(P, \chi)$ of $E(A, F)$ is well defined.

Let $\mu: P \rightarrow J_{1}$ be another generic surjection of P. By (2.2), there exists a surjection $\alpha(T): P[T] \rightarrow I$, where I is an ideal of $A[T]$ of height n with $\alpha(0)=\lambda, I(0)=J_{0}, \alpha(1)=\mu$ and $I(1)=J_{1}$. Using (2.3), we get an ideal K of A of height n and a local F-orientation w_{K} of K such that $\left(I(0), w_{I(0)}\right)+\left(K, w_{K}\right)=0=\left(I(1), w_{I(1)}\right)+\left(K, w_{K}\right)$ in $E(A, F)$. Therefore, $\left(J_{0}, w_{J_{0}}\right)=\left(J_{1}, w_{J_{1}}\right)$ in $E(A, F)$. Therefore, $e(P, \chi)$ is well defined in $E(A, F)$.

We define the Euler class of (P, χ) to be $e(P, \chi)$.
For a projective A-module L of rank 1 and $F=L \oplus A^{n-1}$, the following result is proved in [3, Proposition 4.1]. Since the same proof works in our case, we omit the proof.

Proposition 3.1. Let A be a ring of dimension $n \geq 2$, and let J, J_{1}, J_{2} be ideals of A of height n such that J is comaximal with J_{1} and J_{2}. Let $F=Q \oplus A$ be a projective A-module of rank n. Assume that $\alpha: F \rightarrow J \cap J_{1}$ and $\beta: F \rightarrow J \cap J_{2}$ are surjections with $\alpha \otimes A / J=\beta \otimes A / J$. Suppose there exists an ideal J_{3} of height n such that:
(i) J_{3} is comaximal with J, J_{1} and J_{2} and
(ii) there exists a surjection $\gamma: F \rightarrow J_{3} \cap J_{1}$ with $\alpha \otimes A / J_{1}=\gamma \otimes A / J_{1}$.

Then there exists a surjection $\lambda: F \rightarrow J_{3} \cap J_{2}$ with $\lambda \otimes A / J_{3}=\gamma \otimes A / J_{3}$ and $\lambda \otimes A / J_{2}=\beta \otimes A / J_{2}$.

Using (2.4), (2.5) and (3.1), and following the proof of [3, Theorem 4.2], the next result follows.

Theorem 3.2. Let A be a ring of dimension $n \geq 2$, and let $F=Q \oplus A$ be a projective A-module of rank n. Let J be an ideal of A of height n such that J / J^{2} is generated by n elements. Let $w_{J}: F / J F \rightarrow J / J^{2}$ be
a local F-orientation of J. Suppose that the image of $\left(J, w_{J}\right)$ is zero in $E(A, F)$. Then w_{J} is a global F-orientation of J.

Using (3.2) and (2.5), and following the proof of [3, Corollary 4.3], the next result follows.

Corollary 3.3. Let A be a ring of dimension $n \geq 2$. Let P and $F=Q \oplus A$ be projective A-modules of rank n, and let $\chi: \wedge^{n} F \xrightarrow{\sim} \wedge^{n} P$ be an F-orientation of P. Let J be an ideal of A of height n such that J / J^{2} is generated by n elements, and let w_{J} be a local F-orientation of J. Suppose $e(P, \chi)=\left(J, w_{J}\right)$ in $E(A, F)$. Then there exists a surjection $\alpha: P \rightarrow J$ such that $\left(J, w_{J}\right)$ is obtained from (α, χ).

Using (3.2) and (3.3), and following the proof of [3, Theorem 4.4], the next result follows.

Corollary 3.4. Let A be a ring of dimension $n \geq 2$. Let P and $F=Q \oplus A$ be projective A-modules of rank n, and let $\chi: \wedge^{n} F \xrightarrow{\sim} \wedge^{n} P$ be an F-orientation of P. Then $e(P, \chi)=0$ in $E(A, F)$ if and only if P has a unimodular element.

Let A be a ring of dimension $n \geq 2$, and let $F=Q \oplus A$ be a projective A-module of rank n. Let "bar" denote reduction modulo the nil radical N of A, and let $\bar{A}=A / N$ and $\bar{F}=F / N F$. Let J be an ideal of A of height n with primary decomposition $J=\cap \mathcal{N}_{i}$. Then $\bar{J}=(\bar{J}+N) / N$ is an ideal of \bar{A} of height n with primary decomposition $\bar{J}=\cap \overline{\mathcal{N}}_{i}$. Moreover, any surjection $w_{J}: F / J F \rightarrow J / J^{2}$ induces a surjection $\bar{w}_{\bar{J}}: \bar{F} / \overline{J F} \longrightarrow \bar{J} / \bar{J}^{2}=(J+N) /\left(J^{2}+N\right)$. Hence, the assignment sending $\left(J, w_{J}\right)$ to $\left(\bar{J}, \bar{w}_{\bar{J}}\right)$ gives rise to a group homomorphism Φ : $E(A, F) \rightarrow E(\bar{A}, \bar{F})$.

As a consequence of (3.2), we get the following result, the proof of which is same as of [3, Corollary 4.6].

Corollary 3.5. The homomorphism $\Phi: E(A, F) \rightarrow E(\bar{A}, \bar{F})$ is an isomorphism.
4. Some results on $E(A, F)$. Let A be a ring of dimension $n \geq 2$, and let $F=Q \oplus A$ be a projective A-module of rank n. Let J be an ideal of A of height n, and let $w_{J}: F / J F \rightarrow J / J^{2}$ be a surjection. Let $\bar{b} \in A / J$ be a unit. Then, composing w_{J} with an automorphism of $F / J F$ of determinant \bar{b}, we get another local F-orientation of J, which we denote by $\bar{b} w_{J}$. Further, if w_{J} and \widetilde{w}_{J} are two local F-orientations of J, then it is easy to see that $\widetilde{w}_{J}=\bar{b} w_{J}$ for some unit $\bar{b} \in A / J$.

We recall the following two results from [3, Lemmas 2.7 and 2.8], respectively.

Lemma 4.1. Let A be a ring, and let P be a projective A-module of rank n. Assume $0 \rightarrow P_{1} \rightarrow A \oplus P \xrightarrow{(b,-\alpha)} A \rightarrow 0$ is an exact sequence. Let $\left(a_{0}, p_{0}\right) \in A \oplus P$ be such that $a_{0} b-\alpha\left(p_{0}\right)=1$. Let $q_{i}=\left(a_{i}, p_{i}\right) \in P_{1}$ for $i=1, \ldots, n$. Then:
(i) the map $\delta: \wedge^{n} P_{1} \rightarrow \wedge^{n} P$ given by $\delta\left(q_{1} \wedge \cdots \wedge q_{n}\right)=a_{0}\left(p_{1} \wedge \cdots \wedge\right.$ $\left.p_{n}\right)+\sum_{1}^{n}(-1)^{i} a_{i}\left(p_{0} \wedge \cdots p_{i-1} \wedge p_{i+1} \cdots \wedge p_{n}\right)$ is an isomorphism.
(ii) $\delta\left(b q_{1} \wedge \cdots \wedge q_{n}\right)=p_{1} \wedge \cdots \wedge p_{n}$.

Lemma 4.2. Let A be a ring, and let P be a projective A-module of rank n. Assume $0 \rightarrow P_{1} \rightarrow A \oplus P \xrightarrow{(b,-\alpha)} A \rightarrow 0$ is an exact sequence. Then:
(i) The map $\beta: P_{1} \rightarrow A$ given by $\beta(q)=c$, where $q=(c, p)$, has the property that $\beta\left(P_{1}\right)=\alpha(P)$.
(ii) The map $\Phi: P \rightarrow P_{1}$ given by $\Phi(p)=(\alpha(p), b p)$ has the property that $\beta \circ \Phi=\alpha$ and $\delta \circ \wedge^{n} \Phi$ is a scalar multiplication by b^{n-1}, where δ is as in (4.1).

The following result can be deduced from (4.1) and (4.2). Briefly it says that, if there exists a projective A-module P of rank n with an F-orientation $\chi: \wedge^{n} F \xrightarrow{\sim} \wedge^{n} P$ such that $e(P, \chi)=\left(J, w_{J}\right)$, and if $\bar{a} \in A / J$ is a unit, then there exists another projective A-module P_{1} with $\left[P_{1}\right]=[P]$ in $K_{0}(A)$ and an F-orientation $\chi_{1}: \wedge^{n} F \xrightarrow{\sim} \wedge^{n} P_{1}$ of P_{1} such that $e\left(P_{1}, \chi_{1}\right)=\left(J, \overline{a^{n-1}} w_{J}\right)$.

Lemma 4.3. Let A be a ring of dimension $n \geq 2$. Let P and $F=Q \oplus A$ be projective A-modules of rank n, and let $\chi: \wedge^{n} F \xrightarrow{\sim} \wedge^{n} P$ be an F-orientation of P. Let $\alpha: P \rightarrow J$ be a generic surjection of P,
and let $\left(J, w_{J}\right)$ be obtained from (α, χ). Let $a, b \in A$ with $a b=1$ modulo J, and let P_{1} be the kernel of the surjection $(b,-\alpha): A \oplus P \rightarrow A$. Let $\beta: P_{1} \rightarrow J$ be as in (4.2), and let χ_{1} be the F-orientation of P_{1} given by $\delta^{-1} \chi$, where δ is as in (4.1). Then $\left(J, \overline{a^{n-1}} w_{J}\right)$ is obtained from $\left(\beta, \chi_{1}\right)$.

Using the above results and following the proof of [3, Lemmas 5.3, 5.4 and 5.5], respectively, the next three results follow. Note that in these results we need $F=Q \oplus A^{2}$.

Lemma 4.4. Let A be a ring of dimension $n \geq 2$, and let $F=Q \oplus A^{2}$ be a projective A-module of rank n. Let J be an ideal of A of height n, and let $w_{J}: F / J F \rightarrow J / J^{2}$ be a surjection. Suppose w_{J} can be lifted to a surjection $\alpha: F \rightarrow J$. Let $\bar{a} \in A / J$ be a unit, and let θ be an automorphism of $F / J F$ with determinant $\overline{a^{2}}$. Then the surjection $w_{J} \circ \theta: F / J F \rightarrow J / J^{2}$ can be lifted to a surjection $\gamma: F \rightarrow J$.

Lemma 4.5. Let A be a ring of dimension $n \geq 2$, and let $F=Q \oplus A^{2}$ be a projective A-module of rank n. Let J be an ideal of A of height n, and let w_{J} be a local F-orientation of J. Let $\bar{a} \in A / J$ be a unit. Then $\left(J, w_{J}\right)=\left(J, \overline{a^{2}} w_{J}\right)$ in $E(A, F)$.

Lemma 4.6. Let A be a ring of dimension $n \geq 2$, and let $F=$ $Q \oplus A$ be a projective A-module of rank n. Let J be an ideal of A of height n, and let w_{J} be a local F-orientation of J. Suppose $\left(J, w_{J}\right) \neq 0$ in $E(A, F)$. Then there exists an ideal J_{1} of height n which is comaximal with J and a local F-orientation $w_{J_{1}}$ of J_{1} such that $\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)=0$ in $E(A, F)$. Further, given any ideal K of A of height $\geq 1, J_{1}$ can be chosen to be comaximal with K.

The following result is similar to [3, Lemma 5.6].

Lemma 4.7. Let A be an affine domain of dimension $n \geq 2$ over a field k, and let f be a non-zero element of A. Let $F=Q \oplus A^{2}$ be a projective A-module of rank n, and let J be an ideal of A of height n such that J / J^{2} is generated by n elements. Suppose that $\left(J, w_{J}\right) \neq 0$ in $E(A, F)$, but the image of $\left(J, w_{J}\right)$ is zero in $E\left(A_{f}, F_{f}\right)$.

Then there exists an ideal J_{2} of A of height n such that $\left(J_{2}\right)_{f}=A_{f}$ and $\left(J, w_{J}\right)=\left(J_{2}, w_{J_{2}}\right)$ in $E(A, F)$.

Proof. Since $\left(J, w_{J}\right) \neq 0$ in $E(A, F)$, but its image is zero in $E\left(A_{f}, F_{f}\right)$, we see that f is not a unit in A. By (4.6), we can choose an ideal J_{1} of height n which is comaximal with $J f$ such that $\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)=0$ in $E(A, F)$. Since the image of $\left(J, w_{J}\right)$ is zero in $E\left(A_{f}, F_{f}\right)$, it follows that the image of $\left(J_{1}, w_{J_{1}}\right)$ is zero in $E\left(A_{f}, F_{f}\right)$.

By (3.2), there exists a surjection $\alpha: F_{f} \rightarrow\left(J_{1}\right)_{f}$ such that $\alpha \otimes$ $A_{f} /\left(J_{1}\right)_{f}=\left(w_{J_{1}}\right)_{f}$. Choose a positive integer k such that $f^{2 k} \alpha: F \rightarrow$ J_{1}. Since f is a unit modulo J_{1}, by $(4.5),\left(J_{1}, w_{J_{1}}\right)=\left(J_{1}, \overline{f^{2 k n}} w_{J_{1}}\right)$ in $E(A, F)$. By (2.7), there exists a $\Psi \in \mathrm{EL}\left(F_{f}^{*}\right)$ such that $\beta=\Psi(\alpha) \in F^{*}$ and $\beta(F) \subset J_{1}$ is an ideal of height n. Thus, $\beta(F)=J_{1} \cap J_{2}$, where J_{2} is an ideal of A of height n such that $\left(J_{2}\right)_{f}=A_{f}$. Hence, $J_{1}+J_{2}=A$. From the surjection β, we get $\left(J_{1}, w_{J_{1}}\right)+\left(J_{2}, w_{J_{2}}\right)=0$ in $E(A, F)$. Since $\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)=0$ in $E(A, F)$, it follows that $\left(J, w_{J}\right)=\left(J_{2}, w_{J_{2}}\right)$ in $E(A, F)$. This proves the result.

Using (3.3), (4.5) and (4.7), and following the proof of [3, Lemma 5.8], the following result can be proved.

Lemma 4.8. Let A be an affine domain of dimension $n \geq 2$ over a field k. Let P and $F=Q \oplus A^{2}$ be projective A-modules of rank n with $\wedge^{n} P \xrightarrow{\sim} \wedge^{n} F$. Let f be a non-zero element of A. Assume that every generic surjection ideal of P is a surjective image of F. Then every generic surjection ideal of P_{f} is a surjective image of F_{f}.

Using the above results and following the proof of [3, Theorem 5.9], the next result follows.

Theorem 4.9. Let A be an affine domain of dimension $n \geq 2$ over a real closed field k. Let P and $F=Q \oplus A^{2}$ be projective A-modules of rank n with $\wedge^{n} P \xrightarrow{\sim} \wedge^{n} F$. Assume that every generic surjection ideal of P is a surjective image of F. Then P has a unimodular element.

In particular, if $L=\wedge^{n} P$ and every generic surjection ideal of P is a surjective image of $L \oplus A^{n-1}$, then P has a unimodular element.
5. Weak Euler class group. Let A be a ring of dimension $n \geq 2$, and let $F=Q \oplus A$ be a projective A-module of rank n. We define the weak Euler class group $E_{0}(A, F)$ of A with respect to F as follows:

Let \mathcal{S} be the set of ideals \mathcal{N} of A such that $\mathcal{N} / \mathcal{N}^{2}$ is generated by n elements, where \mathcal{N} is an \mathcal{M}-primary ideal for some maximal ideal \mathcal{M} of A of height n. Let G be the free abelian group on the set \mathcal{S}.

Let $J=\cap \mathcal{N}_{i}$ be the intersection of finitely many ideals \mathcal{N}_{i}, where \mathcal{N}_{i} is an \mathcal{M}_{i}-primary and the \mathcal{M}_{i} 's are distinct maximal ideals of A of height n. Assume that J / J^{2} is generated by n elements. We associate to J the element $\sum \mathcal{N}_{i}$ of G. We denote this element by (J).

Let H be the subgroup of G generated by elements of the type (J), where J is an ideal of A of height n which is a surjective image of F.

We set $E_{0}(A, F)=G / H$.
Let P be a projective A-module of rank n such that $\wedge^{n} P \xrightarrow{\sim} \wedge^{n} F$. Let $\lambda: P \rightarrow J_{0}$ be a generic surjection of P. We define $e(P)=\left(J_{0}\right)$ in $E_{0}(A, F)$. We will show that this assignment is well defined.

Let $\mu: P \rightarrow J_{1}$ be another generic surjection of P. By (2.2), there exists a surjection $\alpha(T): P[T] \rightarrow I$, where I is an ideal of $A[T]$ of height n with $\alpha(0)=\lambda, I(0)=J_{0}, \alpha(1)=\mu$ and $I(1)=J_{1}$. Now, as before, using (2.3), we see that $\left(J_{0}\right)=\left(J_{1}\right)$ in $E_{0}(A, F)$. This shows that $e(P)$ is well defined.
Note that there is a canonical surjection from $E(A, F)$ to $E_{0}(A, F)$ obtained by forgetting the orientations.

We state the following result which follows from (4.3) and (4.5).

Lemma 5.1. Let A be a ring of even dimension $n . ~ L e t ~ P$ and $F=Q \oplus A^{2}$ be projective A-modules of rank n, and let $\chi: \wedge^{n} F \xrightarrow{\sim} \wedge^{n} P$ be an F-orientation of P. Let $e(P, \chi)=\left(J, w_{J}\right)$ in $E(A, F)$, and let \widetilde{w}_{J} be another local F-orientation of J. Then there exists a projective A-module P_{1} with $\left[P_{1}\right]=[P]$ in $K_{0}(A)$ and an F-orientation χ_{1} of P_{1} such that $e\left(P_{1}, \chi_{1}\right)=\left(J, \widetilde{w}_{J}\right)$ in $E(A, F)$.

Proposition 5.2. Let A be a ring of even dimension n, and let $F=Q \oplus A^{2}$ be a projective A-module of rank n. Let J_{1} and J_{2} be two comaximal ideals of A of height n, and let $J_{3}=J_{1} \cap J_{2}$. If any two of
J_{1}, J_{2} and J_{3} are surjective images of projective A-modules of rank n which are stably isomorphic to F, then so is the third one.
Proof. (i) Let P_{1} and P_{2} be two projective A-modules of rank n with $\left[P_{1}\right]=\left[P_{2}\right]=[F]$ in $K_{0}(A)$, and let $\psi_{1}: P_{1} \rightarrow J_{1}$ and $\psi_{2}: P_{2} \rightarrow J_{2}$ be two surjections. Choose F-orientations χ_{1} and χ_{2} of P_{1} and P_{2}, respectively. Then $e\left(P_{1}, \chi_{1}\right)=\left(J_{1}, w_{J_{1}}\right)$ and $e\left(P_{2}, \chi_{2}\right)=\left(J_{2}, w_{J_{2}}\right)$ in $E(A, F)$.

By (2.6), there exists an ideal J_{1}^{\prime} of height n which is a surjective image of both P_{1} and F. Hence, $e\left(P_{1}, \chi_{1}\right)=\left(J_{1}, w_{J_{1}}\right)=\left(J_{1}^{\prime}, w_{J_{1}^{\prime}}\right)$ in $E(A, F)$ for some local F-orientation $w_{J_{1}^{\prime}}$ of J_{1}^{\prime}. Similarly, there exists an ideal J_{2}^{\prime} of height n which is a surjective image of both P_{2} and F. Hence, $e\left(P_{2}, \chi_{2}\right)=\left(J_{2}, w_{J_{2}}\right)=\left(J_{2}^{\prime}, w_{J_{2}^{\prime}}\right)$ in $E(A, F)$ for some local F orientation $w_{J_{2}^{\prime}}$ of J_{2}^{\prime}. Further, we may assume that $J_{1}^{\prime}+J_{2}^{\prime}=A$. Let $\left(J_{1}, w_{J_{1}}\right)+\left(J_{2}, w_{J_{2}}\right)=\left(J_{3}, w_{J_{3}}\right)$ in $E(A, F)$.
Let $J_{3}^{\prime}=J_{1}^{\prime} \cap J_{2}^{\prime}$. By the addition principle (2.4), J_{3}^{\prime} is a surjective image of F and $\left(J_{1}^{\prime}, w_{J_{1}^{\prime}}\right)+\left(J_{2}^{\prime}, w_{J_{2}^{\prime}}\right)=\left(J_{3}^{\prime}, w_{J_{3}^{\prime}}\right)$ in $E(A, F)$. Hence, $\left(J_{3}^{\prime}, w_{J_{3}^{\prime}}\right)=\left(J_{3}, w_{J_{3}}\right)$. Since J_{3}^{\prime} is a surjective image of F, by (5.1), there exists a projective A-module P_{3} with $\left[P_{3}\right]=[F]$ in $K_{0}(A)$ and an F-orientation χ_{3} of P_{3} such that $e\left(P_{3}, \chi_{3}\right)=\left(J_{3}^{\prime}, w_{J_{3}^{\prime}}\right)=\left(J_{3}, w_{J_{3}}\right)$ in $E(A, F)$. By (3.3), there exists a surjection $\psi_{3}: P_{3} \rightarrow J_{3}$ such that $\left(\psi_{3}, \chi_{3}\right)$ induces $\left(J_{3}, w_{J_{3}}\right)$. This proves the first part.
(ii) Now assume that J_{1} and J_{3} are surjective images of P_{1}^{\prime} and P_{3}, respectively, where P_{1}^{\prime} and P_{3} are projective A-modules of rank n with $\left[P_{1}^{\prime}\right]=\left[P_{3}\right]=[F]$ in $K_{0}(A)$.

Let $e\left(P_{3}, \chi_{3}\right)=\left(J_{3}, w_{3}\right)$ for some F-orientation χ_{3} of P_{3}, and let $\left(J_{3}, w_{3}\right)=\left(J_{1}, w_{1}\right)+\left(J_{2}, w_{2}\right)$ in $E(A, F)$. Let $e\left(P_{1}^{\prime}, \chi_{1}^{\prime}\right)=\left(J_{1}, w_{1}^{\prime}\right)$ for some F-orientation χ_{1}^{\prime} of P_{1}^{\prime}. By (5.1), there exists a projective A module P_{1} of rank n with $\left[P_{1}\right]=\left[P_{1}^{\prime}\right]$ in $K_{0}(A)$ and an F-orientation χ_{1} of P_{1} such that $e\left(P_{1}, \chi_{1}\right)=\left(J_{1}, w_{1}\right)$ in $E(A, F)$.

By (2.6), there exists an ideal J_{4} of height n which is a surjective image of F and P_{1}, both, and is comaximal with J_{2} such that $e\left(P_{1}, \chi_{1}\right)=\left(J_{1}, w_{1}\right)=\left(J_{4}, w_{4}\right)$. Write $J_{5}=J_{4} \cap J_{2}$. Assume that $\left(J_{4}, w_{4}\right)+\left(J_{2}, w_{2}\right)=\left(J_{5}, w_{5}\right)$ in $E(A, F)$. Then we have $e\left(P_{3}, \chi_{3}\right)=$ $\left(J_{3}, w_{3}\right)=\left(J_{5}, w_{5}\right)$ in $E(A, F)$.
Since J_{4} is a surjective image of F, we get $e(F, \chi)=\left(J_{4}, \widetilde{w}_{4}\right)=0$ for some χ. If $\left(J_{4}, \widetilde{w}_{4}\right)+\left(J_{2}, w_{2}\right)=\left(J_{5}, \widetilde{w}_{5}\right)$, then $\left(J_{2}, w_{2}\right)=\left(J_{5}, \widetilde{w}_{5}\right)$.

Since $e\left(P_{3}, \chi_{3}\right)=\left(J_{5}, w_{5}\right)$, by (5.1), there exists a projective A-module \widetilde{P}_{3} of rank n with $\left[\widetilde{P}_{3}\right]=\left[P_{3}\right]$ in $K_{0}(A)$ such that $e\left(\widetilde{P}_{3}, \widetilde{w}_{3}\right)=\left(J_{5}, \widetilde{w}_{5}\right)=$ $\left(J_{2}, w_{2}\right)$. Hence, by (3.3), J_{2} is a surjective image of \widetilde{P}_{3} which is stably isomorphic to F. This completes the proof.

Proposition 5.3. Let A be a ring of even dimension n, and let $F=Q \oplus A^{2}$ be a projective A-module of rank n. Let J be an ideal of A of height n. Then $(J)=0$ in $E_{0}(A, F)$ if and only if J is a surjective image of a projective A-module of rank n which is stably isomorphic to F.

Proof. Let J_{1} be an ideal of A of height n. Assume that J_{1} is surjective image of a projective A-module of rank n which is stably isomorphic to F. Assume $\left(J_{1}, w_{J_{1}}\right)$ is a non-zero element of $E(A, F)$. We will show that there exist height n ideals J_{2} and J_{3} with local F-orientations $w_{J_{2}}$ and $w_{J_{3}}$ respectively such that:
(i) J_{2}, J_{3} are comaximal with any given ideal of height ≥ 1,
(ii) $\left(J_{1}, w_{J_{1}}\right)=-\left(J_{2}, w_{J_{2}}\right)=\left(J_{3}, w_{J_{3}}\right)$ in $E(A, F)$ and
(iii) J_{2}, J_{3} are surjective images of projective A-modules of rank n which are stably isomorphic to F.

By (4.6), there exists an ideal J_{2} of height n which is comaximal with J_{1} and any given ideal of height ≥ 1 such that $\left(J_{1}, w_{J_{1}}\right)+\left(J_{2}, w_{J_{2}}\right)=0$ in $E(A, F)$. By (3.2), $J_{1} \cap J_{2}$ is a surjective image of F. By (5.2), J_{2} is a surjective image of a projective A-module of rank n which is stably isomorphic to F.

Repeating the above with $\left(J_{2}, w_{J_{2}}\right)$, we get an ideal J_{3} of height n which is comaximal with any given ideal of height ≥ 1 such that $\left(J_{2}, w_{J_{2}}\right)+\left(J_{3}, w_{J_{3}}\right)=0$ in $E(A, F)$. Further, J_{3} is a surjective image of a projective A-module of rank n which is stably isomorphic to F. Thus, we have $\left(J_{1}, w_{J_{1}}\right)=-\left(J_{2}, w_{J_{2}}\right)=\left(J_{3}, w_{J_{3}}\right)$ in $E(A, F)$. This proves the above claim.

From the above discussion, we see that, given any element h in kernel of the canonical map $\Phi: E(A, F) \rightarrow E_{0}(A, F)$, there exists an ideal \widetilde{J} of height n such that \widetilde{J} is a surjective image of a projective A-module of rank n which is stably isomorphic to F and $h=\left(\widetilde{J}, w_{\widetilde{J}}\right)$ in $E(A, F)$. Moreover, \widetilde{J} can be chosen to be comaximal with any ideal of height ≥ 1.

Now assume $(J)=0$ in $E_{0}(A, F)$. Choose some local F-orientation w_{J} of J. Then $\left(J, w_{J}\right) \in \operatorname{ker}(\Phi)$. From the previous paragraph, we get that there exists an ideal K of height n comaximal with J such that $-\left(J, w_{J}\right)=\left(K, w_{K}\right)$ in $E(A, F)$. Further, K is a surjective image of a projective A-module which is stably isomorphic to F.

Since $\left(J, w_{J}\right)+\left(K, w_{K}\right)=0$ in $E(A, F)$, by (3.2), $J \cap K$ is surjective image of F. By (5.2), J is a surjective image of a projective A-module of rank n which is stably isomorphic to F.

Conversely, assume that J is a surjective image of a projective A module P of rank n which is stably isomorphic to F. Let χ be a F-orientation of P. Then $e(P, \chi)=\left(J, w_{J}\right)$ in $E(A, F)$. By (2.6), there exists an ideal I of height n which is a surjective image of both P and F. Then $e(P, \chi)=\left(J, w_{J}\right)=\left(I, w_{I}\right)$ in $E(A, F)$. Therefore, $(J)=(I)$ in $E_{0}(A, F)$, and hence $(J)=0$ in $E_{0}(A, F)$. This completes the proof.

Proposition 5.4. Let A be a ring of even dimension n, and let $F=Q \oplus A^{2}$ and P be projective A-modules of rank n with $\wedge^{n} P \xrightarrow{\sim} \wedge^{n} F$. Then $e(P)=0$ in $E_{0}(A, F)$ if and only if $[P]=\left[P_{1} \oplus A\right]$ in $K_{0}(A)$ for some projective A-module P_{1} of rank $n-1$.

Proof. Assume that $[P]=\left[P_{1} \oplus A\right]$ in $K_{0}(A)$. By (2.6), there exists an ideal J of A of height n which is a surjective image of both P and $P_{1} \oplus A$. Hence, $e\left(P_{1} \oplus A, \chi\right)=\left(J, w_{J}\right)=0$ in $E(A, F)$, by (3.4). Hence, J is a surjective image of F. By $(5.3), e(P)=(J)=0$ in $E_{0}(A, F)$.

Conversely, assume that $e(P)=0$ in $E_{0}(A, F)$. Let $\psi: P \rightarrow J$ be a generic surjection of P, and let $e(P, \chi)=\left(J, w_{J}\right)$ in $E(A, F)$ for some F-orientation χ of P. Since $e(P)=(J)=0$ in $E_{0}(A, F)$, by (5.3), J is a surjective image of a projective A-module P_{1} with $\left[P_{1}\right]=[F]$ in $K_{0}(A)$. By (2.6), there exists a height n ideal J_{1} which is a surjective image of both P_{1} and F. Let $e\left(P_{1}, \chi_{1}\right)=\left(J, \widetilde{w}_{J}\right)=\left(J_{1}, w_{J_{1}}\right)$ for some F-orientation χ_{1} of P_{1}.

By (5.1), there exists a rank n projective A-module P_{2} with $\left[P_{2}\right]=[P]$ in $K_{0}(A)$ and an F-orientation χ_{2} of P_{2} such that $e\left(P_{2}, \chi_{2}\right)=\left(J, \widetilde{w}_{J}\right)=$ $\left(J_{1}, w_{J_{1}}\right)$ in $E(A, F)$. Since J_{1} is a surjective image of $F,\left(J_{1}, \widetilde{w}_{J_{1}}\right)=0$ in $E(A, F)$ for some local F-orientation $\widetilde{w}_{J_{1}}$ of J_{1}. By (5.1), there exists a projective A-module P_{3} with $\left[P_{3}\right]=\left[P_{2}\right]$ in $K_{0}(A)$ and an F orientation χ_{3} of P_{3} such that $e\left(P_{3}, \chi_{3}\right)=\left(J_{1}, \widetilde{w}_{J_{1}}\right)=0$ in $E(A, F)$. Hence, $P_{3}=P_{4} \oplus A$, by (3.4). Therefore, $[P]=\left[P_{2}\right]=\left[P_{4} \oplus A\right]$ in $K_{0}(A)$. This completes the proof.

Proposition 5.5. Let A be a ring of even dimension n. Let P and $F=Q \oplus A^{2}$ be projective A-modules of rank n with $\wedge^{n} P \xrightarrow{\sim} \wedge^{n} F$. Suppose that $e(P)=(J)$ in $E_{0}(A, F)$, where J is an ideal of A of height n. Then there exists a projective A-module P_{1} of rank n such that $[P]=\left[P_{1}\right]$ in $K_{0}(A)$ and J is a surjective image of P_{1}.
Proof. Since $P / J P$ is free and J / J^{2} is generated by n elements, we get a surjection $\bar{\psi}: P / J P \rightarrow J / J^{2}$. By [3, Corollary 2.14], we can lift $\bar{\psi}$ to a surjection $\psi: P \rightarrow J \cap J_{1}$, where J_{1} is a height n ideal comaximal with J. Let $e(P, \chi)=\left(J, w_{J}\right)+\left(J_{1}, w_{J_{1}}\right)$ in $E(A, F)$ for some F-orientation χ of P.
Since $e(P)=(J)=\left(J \cap J_{1}\right)$ in $E_{0}(A, F),\left(J_{1}\right)=0$ in $E_{0}(A, F)$. By (5.3), J_{1} is a surjective image of a projective A-module P_{2} of rank n which is stably isomorphic to F. By (5.1), there exists a rank n projective A-module P_{3} with $\left[P_{2}\right]=\left[P_{3}\right]$ in $K_{0}(A)$ and an F-orientation χ_{3} of P_{3} such that $e\left(P_{3}, \chi_{3}\right)=\left(J_{1}, w_{J_{1}}\right)$ in $E(A, F)$.

By (2.6), there exists an ideal J_{2} of height n which is comaximal with J and is a surjective image of both F and P_{3}. Assume that $e\left(P_{3}, \chi_{3}\right)=$ $\left(J_{1}, w_{J_{1}}\right)=\left(J_{2}, w_{J_{2}}\right)$ in $E(A, F)$. Hence, $e(P, \chi)=\left(J, w_{J}\right)+\left(J_{2}, w_{J_{2}}\right)=$ $\left(J \cap J_{2}, w_{J \cap J_{2}}\right)$. By (3.3), there exists a surjection $\phi: P \rightarrow J \cap J_{2}$. Since J_{2} is a surjective image of F, we get $\left(J_{2}, \widetilde{w}_{J_{2}}\right)=0$ for some local F orientation $\widetilde{w}_{J_{2}}$ of J_{2}. Let $\left(J, w_{J}\right)+\left(J_{2}, \widetilde{w}_{J_{2}}\right)=\left(J \cap J_{2}, \widetilde{w}_{J \cap J_{2}}\right)$. By (4.3), there exists rank n projective A-module P_{1} with $[P]=\left[P_{1}\right]$ in $K_{0}(A)$ and $e\left(P_{1}, \chi_{1}\right)=\left(J \cap J_{2}, \widetilde{w}_{J \cap J_{2}}\right)=\left(J, w_{J}\right)$ in $E(A, F)$ for some F-orientation χ_{1} of P_{1}. By (3.3), there exists a surjection $\alpha: P_{1} \rightarrow J$. This proves the result.
The proof of the following result is similar to [3, Proposition 6.5]; hence, we omit it.

Proposition 5.6. Let A be a ring of even dimension n, and let J be an ideal of A of height n such that J / J^{2} is generated by n elements. Let $F=Q \oplus A^{2}$ be a projective A-module of rank n, and let $\widetilde{w}_{J}: F / J F \rightarrow J / J^{2}$ be a surjection. Suppose that the element $\left(J, \widetilde{w}_{J}\right)$ of $E(A, F)$ belongs to the kernel of the canonical homomorphism $E(A, F) \rightarrow E_{0}(A, F)$. Then there exists a projective A-module P_{1} of rank n such that $\left[P_{1}\right]=[F]$ in $K_{0}(A)$ and $e\left(P_{1}, \chi_{1}\right)=\left(J, \widetilde{w}_{J}\right)$ in $E(A, F)$ for some F-orientation χ_{1} of P_{1}.
6. Application. Let A be a ring of dimension $n \geq 2$, and let L be a projective A-module of rank 1. Let $F=Q \oplus A$ be a projective
A-module of rank n with determinant L. The group $E(A, L)$ defined by Bhatwadekar and Sridharan [3] is the same as $E\left(A, L \oplus A^{n-1}\right)$. We will define a map $\Delta: E(A, L) \rightarrow E(A, F)$.
Let $w_{J}: L / J L \oplus(A / J)^{n-1} \rightarrow J / J^{2}$ be a surjection. Since $\operatorname{dim} A / J=$ $0, Q / J Q$ is isomorphic to $L / J L \oplus(A / J)^{n-2}$. Choose an isomorphism $\theta: Q / J Q \xrightarrow{\sim} L / J L \oplus(A / J)^{n-2}$ of determinant one. Let $\widetilde{w}_{J}=w_{J} \circ$ $(\theta, i d): Q / J Q \oplus A / J \rightarrow J / J^{2}$ be a surjection.
Assume that w_{J} can be lifted to a surjection $\Phi: L \oplus A^{n-1} \rightarrow J$. Write $\Phi=\left(\Phi_{1}, a\right)$. We may assume that $\Phi_{1}\left(L \oplus A^{n-2}\right)=K$ is an ideal of height $n-1$. Further, we may assume that the isomorphism $\theta: Q / J Q \xrightarrow{\sim} L / J L \oplus(A / J)^{n-2}$ is induced from an isomorphism $\theta^{\prime}:$ $Q / K Q \xrightarrow{\sim} L / K L \oplus(A / K)^{n-2}$ (i.e., $\theta^{\prime} \otimes A / J=\theta$).

Let $\left(\Phi_{2}, a\right): Q \oplus A \rightarrow J=(K, a)$ be a lift of \widetilde{w}_{J}. Then $\Phi_{2} \otimes A / K$: $Q / K Q \rightarrow K / K^{2}$ is a surjection. Let $\phi_{2}: Q \rightarrow K$ be a lift of $\Phi_{2} \otimes A / K$. Then $\phi_{2}(Q)+K^{2}=K$. Hence, there exists an $e \in K^{2}$ with $e(1-e) \in \phi_{2}(Q)$ such that $\phi_{2}(Q)+A e=K$. Now it is easy to check that $\phi_{2}(Q)+A a=\phi_{2}(Q)+(e+(1-e) a) A=K+A a=J$ and $\left(\phi_{2}, e+(1-e) a\right): Q \oplus A \rightarrow J$ is a lift of \widetilde{w}_{J}.
Hence, we have shown that, if w_{J} can be lifted to a surjection from $L \oplus A^{n-1} \rightarrow J$, then \widetilde{w}_{J} can be lifted to a surjection from $Q \oplus A$ to J. Further, if we choose a different isomorphism θ_{1} : $Q / J Q \oplus A / J \xrightarrow{\sim} L / J L \oplus(A / J)^{n-1}$ of determinant one and $w_{1}=w_{J} \circ \theta_{1}:$ $Q / J Q \oplus A / J \rightarrow J / J^{2}$, then \widetilde{w}_{J} and w_{1} are connected by an element of $\mathrm{EL}(Q / J Q \oplus A / J)$. Hence, if we define $\Delta: E(A, L) \rightarrow E(A, F)$ by $\Delta\left(w_{J}\right)=\widetilde{w}_{J}$, then this map is well defined. It is easy to see that Δ is a group homomorphism.

Similarly, we can define a map $\Delta_{1}: E(A, F) \rightarrow E(A, L)$, and it is easy to show that $\Delta \circ \Delta_{1}=i d$ and $\Delta_{1} \circ \Delta=i d$. Hence, we get the following interesting result:

Theorem 6.1. Let A be a ring of dimension $n \geq 2$. Let L and $F=Q \oplus A$ be projective A-modules of ranks 1 and n, respectively, with $\wedge^{n} F \xrightarrow{\sim} L$. Then $E(A, L)$ is isomorphic to $E(A, F)$.

Let J be an ideal of A of height n such that J / J^{2} is generated by n elements. Further, assume that there exists a surjection α : $L \oplus A^{n-1} \rightarrow J$. We will show that J is also a surjective image of $F=Q \oplus A$. Let w_{J} be the local L-orientation of J induced from
α. Then $\left(J, w_{J}\right)=0$ in $E(A, L)$. Hence, $\Delta\left(J, w_{J}\right)=\left(J, \widetilde{w}_{J}\right)=0$ in $E(A, F)$. Hence, by (3.2), J is a surjective image of F.

We define a map $\widetilde{\Delta}: E_{0}(A, L) \rightarrow E_{0}(A, F)$ by $(J) \mapsto(J)$. The above discussion shows that $\widetilde{\Delta}$ is well defined. Similarly, we can define a map $\widetilde{\Delta}_{1}: E_{0}(A, F) \rightarrow E_{0}(A, L)$ such that $\widetilde{\Delta} \circ \widetilde{\Delta}_{1}=i d$ and $\widetilde{\Delta}_{1} \circ \widetilde{\Delta}=i d$. Thus we get the following interesting result:

Theorem 6.2. Let A be a ring of dimension $n \geq 2$. Let L and $F=Q \oplus A$ be projective A-modules of ranks 1 and n, respectively, with $\wedge^{n} F \xrightarrow{\sim} L$. Then $E_{0}(A, L)$ is isomorphic to $E_{0}(A, F)$.

Since, by $[\mathbf{3}, 6.8], E_{0}(A, L)$ is canonically isomorphic to $E_{0}(A, A)$, we get the surprising result that $E_{0}(A, F)$ is canonically isomorphic to $E_{0}\left(A, A^{n}\right)$ for any projective A-module $F=Q \oplus A$ of rank n.
We end with the following result which follows from (5.3).
Proposition 6.3. Let A be a ring of even dimension n, and let J be an ideal of A of height n such that J / J^{2} is generated by n elements. Let L and P be projective A-modules of ranks 1 and n, respectively, such that P is stably isomorphic to $L \oplus A^{n-1}$. Then J is surjective image of P if and only if, given any projective A-module Q of rank $n-2$ with determinant L, there exists a projective A-module P_{1} which is stably isomorphic to $Q \oplus A^{2}$ such that J is surjective image of P_{1}.

REFERENCES

1. S.M. Bhatwadekar and M.K. Keshari, A question of Nori: Projective generation of ideals, K-Theory 28 (2003), 329-351.
2. S.M. Bhatwadekar and A. Roy, Some theorems about projective modules over polynomial rings, J. Algebra 86 (1984), 150-158.
3. S.M. Bhatwadekar and Raja Sridharan, The Euler class group of a Noetherian ring, Compos. Math. 122 (2000), 183-222.

Department of Mathematics, IIT Mumbai, Mumbai - 400076, India
Email address: keshari@math.iitb.ac.in
Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045
Email address: mandal@math.ku.edu

[^0]: The first author supported by BOYSCAST Fellowship 2008-09 of Department of Science and Technology, India.

 Received by the editors on December 19, 2009, and in revised form on June 14, 2010.

