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This is an erratum to [4] and, as well, to [3]. This article 
provides examples to indicate inconsistencies, in [3], [4].

1. Introduction

The following is a version of the complete intersection conjecture of M. P. Murthy 
([9], [5, pp. 85]).

Conjecture 1.1. Suppose A = k[X1, X2, . . . , Xn] is a polynomial ring over a field k. Then, 
for any ideal I in A, μ(I) = μ 

(
I
I2

)
, where μ denotes the minimal number of generators.

A companion to Conjecture 1.1 is the following open problem ([4, 1.2]).
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Open Problem 1.2. Suppose A = R[X] is a polynomial ring over a noetherian commuta-
tive ring R and I is an ideal of A, containing a monic polynomial. Then, μ(I) = μ 

(
I
I2

)

A solution of this conjecture (1.1) was claimed in [3], when k is an infinite perfect field 
and 1/2 ∈ k, which was retracted recently [2]. The claimed proof of Conjecture 1.1 in [3]
was a consequence of a stronger claim that, for integers r ≥ 2, any set of r-generators of 
I/I2 lifts to a set of r-generators of I. A version of this question of liftability of generators 
of I/I2 was considered in [7], and a counter example was given [7, Example 2.4], when 
n = 2. The community was first alerted, independently, by Mrinal K. Das and this 
author, regarding the existence of [7, Example 2.4], contrary to the claims of liftablility 
[3, Theorem 3.2.8]. In Section 2, we develop a larger class of such examples, for all integers 
r ≥ 2.

The methods in [3], while erroneous, were vastly generalized in [4], by using Popescu’s 
Desingularization Theorem ([10,12]) and by the homotopy triviality argument [4, Propo-
sition 4.1]. In particular, a solution to the Problem 1.2 was claimed in [4], when R is a 
regular ring containing a field k, with 1/2 ∈ F . We retract all that. Further, the weaker 
version of S. Abhyankar’s Epimorphism Conjecture [4, 1.5] remains open, contrary to 
the claims in [4].

The claims in [3,4] were fairly striking and fundamental in nature. For the benefit of 
the wider community, it is imperative that we provide some comprehensive clarity. We 
do the same in Section 3. We underscore that, there is no logical error in the methods 
in [4], barring the use of the claimed results in [3].

Acknowledgments The author is thankful to M. P. Murthy for his collaboration on the 
examples in Section 2. Thanks are also due to Mrinal K. Das for his communications.

2. The examples

The following two examples were worked out in collaboration with M. P. Murthy.

Example 2.1. Let n ≥ 3 be any integer, and A = k[X1, . . . , Xn; Y1, . . . , Yn] be a polyno-
mial ring over any field k. Let f =

∑n
i=1 XiYi − 1 ∈ A and I = Af . Write A = A

(f) . For 
elements in A (respectively, in I), the images in A (respectively, in I

I2 ) will be denoted 
by “overline”. Then,

X1f,X2f, . . . , Xnf generates I

I2 .

This set of generators of I
I2 would not lift to a set of generators of I.

Proof. As in [7], we have the commutative diagram
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A
f

∼ I

A
(f)

f

∼ I
I2

Suppose X1f, X2f, . . . , Xnf lifts to a set of generators of I. Then, by the diagram 
above, the unimodular row

(
X1, X2, . . . , Xn

)
of A

lifts to a unimodular row

(F1, F2, . . . , Fn) of A.

Since projective A-modules are free, there is a matrix σ ∈ GLn(A), whose first row 
is (F1, . . . , Fn). Therefore, 

(
X1, X2, . . . , Xn

)
is the first row of the image of σ in 

GLn

(
A
)
. So, the projective A-module defined by 

(
X1, X2, . . . , Xn

)
is free. This is 

impossible, by the Theorem of N. Mohan Kumar and Madhav V. Nori (see [12, Theorem 
17.1]). This completes the proof. �

The following is a variation of Example 2.1.

Example 2.2. Let A = R[X0, X1, . . . , Xn] be a polynomial ring over the field of real 
numbers. Let f =

∑n
i=0 X

2
i − 1 ∈ R and I = Af . Assume, n �= 0, 1, 3, 7. Then, 

X0f, X1f, . . . , Xnf induce a set of generators for I/I2, which would not lift to a set 
of generators of I.

Proof. Same as the proof of (2.1), while we use the fact that tangent bundles over real 
n-spheres (n �= 0, 1, 3, 7) are nontrivial (see [12, Theorem 2.3]). �
Remark 2.3. Note I = Af in (2.1) is a principal ideal. So, Examples 2.1, 2.2, do not 
provide a counter example of the Complete Intersection Conjecture 1.1.

3. Erratum

The following list provides some clarifications regarding the inconsistencies in the 
literature [3,4], at this time.

1. The claimed results [3, Theorem 3.2.7, 3.2.8 ] in [3] are false, as stated, because 
Examples 2.1, 2.2 would be contrary to these statements.

2. It was pointed out to me, by Mrinal K. Das that the proof of [3, Lemma 3.2.3] is 
not convincing. Clearly, this would be a source of logical gap in the arguments in the 
proof of [3, Theorem 3.2.7].
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3. The proof of [3, Theorem 1.0.6] requires further clarifications, with regard to the 
agreement of the two definitions of Elementary Orthogonal Groups, given in [1]
and [11]. Experts seem noncommittal regarding such agreement.

4. The claimed proof of [3, Theorem 3.2.9] is not valid, since it uses [3, Theorem 3.2.8]. 
Therefore, the Complete Intersection Conjecture 1.1 is still open and the best result 
on this conjecture, at this time, remains those in [8] and [6].

5. There is no logical error in [4]. However, since the main results in [4] depends on 
the validity of the same in [3], they do not have any valid proofs, at this time. In 
particular,
(a) The claimed results [4, Theorems 3.8, 3.9, 4.2,] are, in deed, false. The claimed 

result [4, Theorems 4.3] does not have a valid proof. Therefore, the Open Prob-
lem 1.2 remains open and the best results on this problem remains those in [6].

(b) The claimed proof of the weaker version of Abhyankar’s epimorphism conjecture 
[4, Theorem 4.5, 4.6], is not valid.

6. The results in [4] that are not dependent on results in [3] are valid. In particular,
(a) The [4, Propositions 4.1], on triviality of homotopy obstructions, for ideals con-

taining a monic polynomial, remains valid.
(b) Results in [4, Section 5], on the alternate description of the Homotopy Obstruc-

tion set π0 (Q2n) (A), remains valid.
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