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1. Introduction

Throughout this paper A will denote a Cohen–Macaulay (CM) ring with dimAm =
d ∀ m ∈ Max(A). Throughout, “CM” abbreviates “Cohen–Macaulay” and “FPD” abbre-
viates “finite projective dimension”, which clarifies the title of the paper.
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To introduce the main results, in this paper, let M denote a finitely generated 
A-module with proj dim(M) = r < ∞. When A is local, then M is Cohen–Macaulay 
if and only if grade(M) = r. In this case, Exti(M, A) = 0 ∀ i �= r. However, even in 
the non-local case, grade of M is defined as grade(M) := min{i : Exti(M, A) �= 0}
(see [6]). Let B denote the category of such finitely generated A-modules M , with 
proj dim(M) = grade(M). Then, ∀ M ∈ B, Exti(M, A) = 0 ∀ i �= proj dim(M).

Now suppose P• is an object in the category Chb
B(P(A)) of finite complexes of finitely 

generated projective A-modules, with homologies in B. In this paper, we give a necessary 
and sufficient condition, for such a complex P• ∈ Chb

B(P(A)), so that its dual P ∗
• is also 

in Chb
B(P(A)).

To further describe this condition let the homology Ht(P•) �= 0, at degree t and 
ρt = proj dim (Ht(P•)). The homomorphism Ht(P•) −→ Pt

Bt
, where Bt = ∂t+1(Pt+1), 

induces a homomorphism

ιt : Extρt

(
Pt

Bt
, A

)
−→ Extρt (Ht(P•), A)

The main Theorem 3.6 states that the dual P ∗
• ∈ Chb

B(P(A)) if and only if ιt is an 
isomorphism, whenever Ht(P•) �= 0.

The theorem immediately applies to complexes P ∗
• ∈ Chb(P(A)) whose homologies 

are locally CMFPD (see Corollary 3.7). The theorem also applies to a number of inter-
esting subcategories of B, for which ιt is already an isomorphism, for all such t. Among 
them are the categories B(n) = {M ∈ B : proj dim(M) = n}. Note, A := B(d) is the 
category of modules of finite length and finite projective dimension. The stability of 
P• ∈ Chb

A(P(A)), under duality is a theorem in [4].
We underscore that this paper is part of a wider study [4,5] of duality of subcategories 

of derived categories and their Witt groups. While we have particular interest in the 
setting of singular varieties and we also provide further insight into nonsingular varieties 
in these articles. Our interest in Witt theory stems from the introduction of Chow–Witt 
groups, [1] and developed by Fasel [3], as obstruction groups for projective modules to 
split off a free direct summand. The readers are referred to [4] for further introductory 
comments. To be more specific, one of the primary motivations behind this study has 
been to address the Witt theory, for non-regular (Cohen–Macaulay) schemes X, with 
dimX = d, while this article addresses the duality aspect of the same. Let V (X) denote 
the category of locally free sheaves on X and Db(V (X)) denote the derived category of 
finite complexes of locally free sheaves. Let M(X, d) denote the subcategory of Coh(X)
with finite length and finite V (X)-dimension. (For unexplained notations, readers are 
referred to [5,4].) As a consequence of Theorem 3.6, it follows that Db

M(X,d)(V (X)) is 
closed under the usual duality induced by E �→ Hom(E , OX). This allows us [5,4] to give 
a definition of shifted Witt groups W r(Db

M(X,d)(X)) of Db
M(X,d)(X), while Db

M(X,d)(X)
fails to inherit a triangulated structure. Also note that M(X, d) has a duality sending 
F �→ Extd(F , OX) and hence a Witt group W (M(X, d)) is defined. It was established 
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that W (M(X, d)) ∼−→ W dim X(Db
M(X,d)(X)) is an isomorphism [5,4]. When X is regular, 

this would be a result of Balmer and Walter [2], while in the non-regular case, the right 
side would be meaningful only in the light of Theorem 3.6. Note, when X is regular 
M(X, d) is subcategory of schemes of finite length.

We would like to thank Sankar P. Dutta for many helpful discussions. The second 
named author is thankful to the University of Kansas and the Robert D. Adams Trust.

2. Preliminaries

We will borrow some notations from [4].

Notations 2.1. Throughout this article, A will denote a noetherian commutative ring, 
such that dimAm = d ∀ m ∈ Max(A). All modules will be assumed to be finitely 
generated, unless stated. Most often, A will be assumed to be Cohen–Macaulay. We will 
also use the abbreviation “CM” for “Cohen–Macaulay”. We set up the notations:

1. Mod(A) will denote the category of finitely generated A-modules.
2. MFPD(A) will denote the category of finitely generated A-modules with finite pro-

jective dimension.
3. For integers r ≥ 0, denote

B(r) := B(A)(r) := {M ∈ MFPD(A) : proj dim(M) = grade(M) = r}

and

B := B(A) :=
⋃
r≥0

B(r)

Note, when A is local and CM, then B is the category of finitely generated Cohen–
Macaulay A-modules with finite projective dimension (see 2.7). In the non-local 
case, there are modules M ∈ MFPD(A) which are locally CM, with M /∈ B, e.g. 

A = k[X,Y ],M = k[X,Y ]
(X,Y ) ⊕ k[X,Y ]

(X − 1) .

4. P(A): category of finitely generated projective A-modules.
5. Chb(P(A)) will denote the category of bounded complexes of finitely generated pro-

jective A-modules. Also, Chb
B(P(A)) will denote the category of complexes P• in 

Chb(P(A)) such that all the homologies Hi(P•) are in B.
6. We will denote complexes P• in Chb(P(A)) by:

· · · 0 Pm

∂m

Pm−1 · · · · · · Pn 0 · · ·

7. For a complex P• of projective A-modules P ∗
• will denote the usual dual induced by 

Hom( , A).
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8. Let Br = Br(P•) := ∂r+1(Pr+1) ⊆ Pr denote the module of r-boundaries and 
Zr = Zr(P•) := ker(∂r) ⊆ Pr denote the module of r-cycles (or the rth syzygy).

9. The rth-homology of P• will be denoted by Hr = Hr(P•) := Zr

Br
. So, the rth-homology 

of the dual is Hr(P ∗
• ) =

ker
(
∂∗
−(r−1)

)
image(∂∗

−r) .
10. By width, we mean the number h − l where Ph �= 0, Pl �= 0 and Pk = 0 for all 

r /∈ [l, h].

Definition 2.2. A complex P• as in 2.1, is called indecomposable, if

P• = U• ⊕ V• =⇒ U• = 0 or V• = 0.

We say that P• is decomposable, if P• is not indecomposable.

Lemma 2.3. Let P• be as in 2.1. If Br−1 is projective, then P• is a direct sum of the 
following two complexes

· · · Pr+1 Zr 0 0 0 0 · · ·

· · · 0 Br−1 Pr−1 Pr−2 Pr−3 · · · · · ·

Example 2.4. Given an indecomposable projective module P , there is a trivial indecom-
posable complex

0 P P 0

which is quasi-isomorphic to 0.

Lemma 2.5. Let

P• · · · Pr+1 Pr Pr−1 · · ·

be an indecomposable complex of projective modules. Assume, for all r, Hr is CM and 
has finite projective dimension (i.e. Hr ∈ B).

If dimA = 0, then width(P•) = 0 or P• is a trivial indecomposable complex (as in 2.4). 
If dimA = 1, then width(P•) = 1.

Proof. First, assume d = 0. Since, P• is a bounded complex, we can assume Pr = 0
for all r < 0 and P0 �= 0. In this case, H0 = 0 or proj dimH0 = 0. If H0 �= 0 then 
P0 = B0 ⊕H0. So, P• has a direct summand

H• : 0 H0 0.



S. Mandal, S. Sane / Journal of Algebra 440 (2015) 49–71 53
Since, it is indecomposable, P• = H•. So, width is zero. If H0 = 0 then P1
∼−→ P0 ⊕ Z1. 

Since P• is indecomposable, Z1 = 0 and P1
∼−→ P0. So, P• is given by

0 P1
∼

P0 0.

This is isomorphic to

0 P0 P0 0.

and P0 is also indecomposable.
Now assume d = 1. We assume P0 �= 0 and Pr = 0 for all r < 0. If H0(P•) = 0, by 

the same argument as above P• is isomorphic to

0 P0 P0 0.

and P0 is also indecomposable. So, assume H0 �= 0. Then, we have an exact sequence

0 B0 P0 H0 0.

Then, proj dimH0 = 0 or 1. In either case, it follows B0 is projective. So, P1 = Z1 ⊕B0. 
Note B0 �= P0. So, P• splits into two complexes:

Q• : · · · 0 B0 P0 0

P ′
• : · · · P2 Z1 0 0

and hence P• = Q•. So the proof is complete. �
2.1. CM modules, grade and finite projective dimension

Readers are referred to [6] for a definition of grade(M) and for a proof of the following 
lemma.

Lemma 2.6. Suppose (A, m) is a Cohen–Macaulay local ring and dimA = d. Suppose M
is a Cohen–Macaulay A-module with finite projective dimension.

1. Then,

proj dimM + dimM = d and proj dimM = grade(M).

2. Let r = proj dimM . Then, ∀ i �= r, Exti(M, A) = 0, and proj dim Extr(M, A) = r.
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Corollary 2.7. Suppose (A, m) is a Cohen–Macaulay local ring with dimA = d. Sup-
pose M is a finitely generated A-module with finite projective dimension. Then, M is 
Cohen–Macaulay if and only if

proj dimM = grade(M) = height(ann(M)).

Proof. Suppose M is Cohen–Macaulay. Write I = ann(M). Then depthM = dimM =
dim

(
A
I

)
= d − height(I). Therefore proj dim(M) = height(I). Also, grade(M) =

depthI(A) = height(I) (see [6, p. 108]).
Now suppose proj dimM = grade(M) = height(I). Now, height(I) = d − dimM . So, 

proj dimM + dimM = d. Hence dimM = depth(M). So, M is Cohen–Macaulay. �
The following lemma will be useful for our subsequent discussions.

Lemma 2.8. Let A be a Cohen–Macaulay ring with dimA = d (non-local but as in 2.1) 
and M �= 0 be in B. Let ℘0, ℘1 ∈ Supp(M) and ℘0 ⊆ ℘1. Then, proj dim(M℘0) =
proj dim(M℘1).

We state two lemmas without proof.The proof of the second lemma can be found in 
([4, Proposition 2.8]).

Lemma 2.9. Let A be a CM ring and M, N be finitely generated A-modules such that M
has finite projective dimension. Let r ≥ 0 be an integer. Then
height(Ann(Extr(M, N))) ≥ r. In this case, grade(Extr(M, N)) ≥ r.

Lemma 2.10. Let P• be a bounded complex of projective modules such that all the ho-
mologies Hi have finite projective dimension. Then so do all the boundaries Bi, kernels 
Zi and the cokernels Pi

Bi
. In fact,

proj dim(Br) ≤ dimA− 1, proj dim(Zr) ≤ dimA− 2, ∀ r.

Lemma 2.11. Let A be a CM ring and P• be a complex in Chb
B(P(A)). Let t0, t1, . . . be 

the list of all the degrees so that Hti(P•) �= 0 and ρi = proj dim(Hti(P•)). Then,

grade
(

Extρk

(
Ptk

Btk

, A

))
= ρk.

Proof. To begin with, note that Ptk

Btk
has finite projective dimension by 2.10 and hence, 

by 2.9,

grade
(

Extρk

(
Ptk , A

))
≥ ρk.
Btk
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Now, consider the exact sequence

0 Htk
Ptk

Btk
Btk−1 0

and the corresponding five term exact sequence

0 Extρk (Btk−1, A) Extρk

(
Ptk

Btk
, A

)
Extρk (Htk , A)

Extρk+1 (Btk−1, A) Extρk+1
(

Ptk

Btk
, A

)
0

Choose ℘ ∈ Spec(A) with height(℘) = ρk, such that Extρk (Htk , A)℘ �= 0. Applying 2.9, 
we get Extρk+1 (Btk−1, A)℘ = 0. Hence, Extρk

(
Ptk

Btk
, A

)
℘
�= 0. Hence,

grade
(

Extρk

(
Ptk

Btk

, A

))
= ρk.

The proof is complete. �
Remark 2.12. Let sj := tj − tj−1. Note in the previous proof that if ρk ≥ 1, then the 
5-term exact sequence can be rewritten as:

0 Extρk+sk
(

Ptk−1
Btk−1

, A
)

Extρk

(
Ptk

Btk
, A

)
Extρk (Htk , A)

Extρk+1+sk
(

Ptk−1
Btk−1

, A
)

Extρk+1
(

Ptk

Btk
, A

)
0

and hence it follows that for ℘ ∈ Spec(A) with height(℘) < ρk + sk, we have

Extρk

(
Ptk

Btk

, A

)
℘

∼= Extρk (Htk , A)℘ .

3. Dualizable complexes

In this section, we classify complexes P• ∈ Chb
B(P(A)) whose dual is also in 

Chb
B(P(A)). The following lemma will be useful subsequently.
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Lemma 3.1. Suppose P• : P2
d2

P1
d2

P0 is a complex of projective A-modules. 
Then, there is an exact sequence

0
(

P0
B0

)∗
P ∗

0

(
P1
B1

)∗
H−1(P ∗

• ) 0

Proof. We have the diagrams:

P2
d2

P1
d1

P0

B1 B0

P ∗
0

d∗
1

P ∗
1

d2
∗

P ∗
2

So,

ker(d∗2) = {λ ∈ P ∗
1 : λ|B1 = 0} =

(
P1

B1

)∗
.

Also,

Image(d∗1) ∼= {λ|B0 : λ ∈ P ∗
0 }

Let

K = {λ ∈ P ∗
0 : λ|B0 = 0} =

(
P0

B0

)∗
.

Then we have an exact sequence

0 K P ∗
0 Image(d∗1) 0

So,

0
(

P0
B0

)∗
P ∗

0 Image(d∗1) 0

This completes the proof. �
The following is a key tool to compute the homologies of the dual.

Proposition 3.2. Suppose

P• : Ps+1 Ps Ps−1 · · · P1 P0
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is a complex of projective A-modules with s > 0 such that Hi(P•) = 0 for i = 1, . . . , s −1
and Hs(P•) ∈ B. Then,

∀ 0 < t < s H−t(P ∗
• ) = Ext1

(
Pt−1

Bt−1
, A

)
= Extt

(
P0

B0
, A

)
.

If proj dim(Hs) ≥ 1, then the above statement also holds for t = s.

Proof. For 0 < t < s the statement follows because the complex is exact between 0 and 
s. For the last statement, we have an exact sequence

0 Hs
Ps

Bs
Bs−1 0.

Since proj dim(Hs) ≥ 1 and Hs ∈ B, we conclude that H∗
s = 0 and hence, B∗

s−1
∼=

(
Ps

Bs

)∗
. 

Therefore, in conjunction with 3.1, we have a commutative diagram of exact sequences:

0 Ext0
(

Ps−1
Bs−1

, A
)

Ext0 (Ps−1, A) Ext0 (Bs−1, A)

�

Ext1
(

Ps−1
Bs−1

, A
)

�

0

0 Ext0
(

Ps−1
Bs−1

, A
)

Ext0 (Ps−1, A) Ext0
(

Ps

Bs
, A

)
H−s(P ∗

• ) 0

�
Theorem 3.3. Let P• be a complex in Chb

B(P(A)). Let t0 < t1 < t2 < . . . be the list of all 
the degrees so that Hti(P•) �= 0. Write ρi = proj dim(Hti(P•)). Assume ρj ≥ 1 for all j. 
Then, the following are equivalent:

1. For all k ≥ 1 and all j, the module Extk
(

Ptj

Btj
, A

)
is in B.

2. For all j, the module Extρj

(
Ptj

Btj
, A

)
is in B.

3. The natural homomorphism

ιj : Extρj

(
Ptj

Btj

, A

)
∼−→ Extρj

(
Htj , A

)
is an isomorphism ∀j.

In this case, for all j, Ext0
(

Ptj

Btj
, A

)
has finite projective dimension.

Proof. Clearly, (1) =⇒ (2). We will prove (3) =⇒ (1) =⇒ (2) =⇒ (3).
(3) =⇒ (1): Suppose ιj is an isomorphism for all j. Since the complex is exact before t0, 
it splits and hence, Bt0−1 is projective. Hence, Pt0

∼= Zt0 ⊕Bt0−1. So,

Extk
(
Pt0

Bt0

, A

)
∼= Extk

(
Zt0

Bt0

, A

)
⊕ Extk (Bt0−1, A) ∼=

⎧⎨
⎩

0 k �= 0, ρ0
Extρ0 (Ht0 , A) , k = ρ0

∗
.

Bt0−1 k = 0



58 S. Mandal, S. Sane / Journal of Algebra 440 (2015) 49–71
Hence, Extk
(

Pt0
Bt0

, A
)

is in B for all k. Now we do the induction step. So, we assume the 
statement holds for all j ≤ j0 and prove it for j1 = j0+1. Let s = tj1−tj0 . Corresponding 
to the short exact sequence:

0 Htj1

Ptj1
Btj1

Btj1−1 0 (I),

we get a long exact sequence

0 Ext0(Btj1−1, A) Ext0
(

Ptj1
Btj1

, A

)
0 · · · · · · · · ·

Extρj1−1(Btj1−1, A) Extρj1−1
(

Ptj1
Btj1

, A

)
0 Extρj1 (Btj1−1, A)

Extρj1

(
Ptj1
Btj1

, A

) ιj1

∼ Extρj1
(
Htj1

, A
)

Extρj1+1(Btj1−1, A) Extρj1+1
(

Ptj1
Btj1

, A

)
0

Since ιj1 is an isomorphism,

Extρj1 (Btj1−1, A) = 0, Extρj1

(
Ptj1

Btj1

, A

)
∼= Extρj1

(
Htj1

, A
)
, which is in B.

Also, Extρj1+1(Btj1−1, A) ∼= Extρj1+1
(
Ptj1

Btj1

, A

)
.

Then,

∀k �= ρj1 , k ≥ 1 Extk
(
Ptj1

Btj1

, A

)
∼= Extk(Btj1−1, A) ∼= Extk+s

(
Ptj0

Btj0

, A

)

which are all in B, by induction hypothesis. Also

Ext0
(
Ptj1

Btj1

, A

)
∼= Ext0(Btj1−1, A) has finite projective dimension.

(2) =⇒ (3): To prove this we assume that ιj is not an isomorphism for some j.
So, ∃m and j such that (ιj)m is not an isomorphism. It will be enough to prove that 

Extρi

(
Pti

Bti
, A

)
m

either has infinite projective dimension or is not CM, for some i. By 

replacing A by Am, we assume A is local.
Further, we write P• =

⊕r
n=1 P

n
• , where Pn

• are indecomposable complexes in 
ChB(P(A)). If Htj (Pn

• ) �= 0, ρj = grade(Htj ) ≤ grade(Htj (Pn
• )) ≤ proj dim(Htj (Pn

• )) ≤
proj dim(Htj ) = ρj and so proj dim(Htj (Pn

• )) = ρj and also, for some j, n the homo-
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morphism ιj : Extρj

(
Pn

tj

Bn
tj

, A

)
−→ Extρj

(
Htj (Pn

• ), A
)

is not an isomorphism. We will 

replace P• by such a Pn
• and assume that P• is indecomposable. Let

j1 = min
{
j : Extρj

(
Ptj

Btj

, A

)
ιj−→ Extρj

(
Htj , A

)
is not an isomorphism

}

Note that j1 > 0 since Pt0
Bt0

= Ht0 ⊕ Bt0−1. Let j0 = j1 − 1 and s = tj1 − tj0 . By 

minimality of j1, since we already proved (3 =⇒ 1), it follows that (1) applies to 
Ptj0

Btj0

. 

So, Ext0
(
Ptj0

Btj0

, A

)
has finite projective dimension and

∀ k ≥ 1 Extk
(
Ptj0

Btj0

, A

)
is in B.

It follows that Ext0
(
Btj1−1, A

)
has finite projective dimension and

∀ k ≥ 1 Extk
(
Btj1−1, A

) ∼= Extk+s

(
Ptj0

Btj0

, A

)
is in B.

Corresponding to the short exact sequence (I), we have the five term exact sequence

0 → Extρj1+s

(
Ptj0

Btj0

, A

)
→ Extρj1

(
Ptj1

Btj1

, A

)
ιj1−→ Extρj1

(
Htj1

, A
)

∂→ Extρj1+1+s

(
Ptj0

Btj0

, A

)
→ Extρj1+1

(
Ptj1

Btj1

, A

)
→ 0.

By 2.11,

grade
(

Extρj1

(
Ptj1

Btj1

, A

))
= ρj1 .

For notational convenience, write

K = Extρj1+s

(
Ptj0

Btj0

, A

)
E = Extρj1

(
Ptj1

Btj1

, A

)
, C = image(ιj1),

H = Extρj1 (H1, A) , B = image(∂), K ′ = Extρj1+1+s

(
Ptj0

Btj0

, A

)

If E has infinite projective dimension then E is not in B. So, assume E has finite 
projective dimension. All the modules listed above have finite projective dimension. Since 
ιj1 is not an isomorphism, either K �= 0 or C �= 0. Assume K �= 0. We have g :=
grade(K) ≥ ρj1 + s. Let ℘ ∈ Supp(K) such that height(℘) = g. Therefore
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g = grade(K℘) ≤ proj dim(K℘) ≤ dim(A℘) = g, and so proj dim(K℘) = g.

Since Torg+1( A℘

℘A℘
, C℘) = 0, it follows from the sequence of Tor modules that

proj dim(E℘) = g. So, proj dim(E) ≥ proj dim(E℘) = g ≥ ρj1 + s > ρj1 . So, E is 
not CM and hence not in B.

Now assume K = 0. Then it follows that B �= 0, otherwise ιj1 would be an isomor-
phism. Consider the exact sequence

0 E H B 0.

Since B ⊆ K ′, g := grade(B) ≥ grade(K ′) ≥ ρj1 + s + 1. Let ℘ ∈ Supp(B) such 
that height(℘) = g and proj dim(B℘) = g. Since proj dim(H) = ρj1 ≤ g − 2, it follows 
proj dim(E℘) = proj dim(B℘) − 1 = g − 1 > ρj1 . So, E is not CM and hence not in B. 
The proof is complete. �

The following will be needed for our subsequent inductive argument, which follows 
from the proof of 3.3.

Corollary 3.4. Let P• be as in 3.3. Further, assume A is local and P• is indecomposable. 

Suppose ιj : Extρj

(
Ptj

Btj

, A

)
→ Extρj

(
Htj , A

)
is not an isomorphism for some j.

Let j0 = min{j : ιj is not an isomorphism}. Then,

1. E := Extρj0

(
Ptj0
Btj0

, A
)

is not in B.

2. For all k < j0, Extρk

(
Ptk

Btk
, A

)
is in B.

3. For all ℘ ∈ Supp(E) with height(℘) = ρj0 , E℘ ∈ B (for the ring A℘).

Proof. The proof follows from the proof of 3.3 and 2.11. �
We proceed to give an equivalence condition for duality. The following proposition 

will be useful for our inductive argument.

Proposition 3.5. Let P• as in 3.3. Further, assume A is local and P• is indecomposable.

X(k) = {℘ ∈ X = Spec(A) : height(℘) = k} and gkj = grade
(

Extj
(
Ptk

Btk

, A

))
.

Assume, for some r0 ≥ 1 and some ti−1, Extr0
(
Pti−1

Bti−1

, A

)
is not in B, and

∀℘ ∈ X

(
gi−1
j

)
, ∀1 ≤ j ≤ r0 Extj

(
Pti−1

Bt
, A

)
is in B(A℘).
i−1 ℘
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Then

1. either H−r(P ∗
• ) is not in B for some r > ti−1.

2. or there is an r1 ≥ 1, such that the following hold:

Extr1
(
Pti

Bti

, A

)
is not in B and

∀℘ ∈ X

(
gi
j

)
, ∀1 ≤ j ≤ r1 Extj

(
Pti

Bti

, A

)
℘

is in B.

In particular, if ti−1 = tn is the last one, then 1 must hold.

Proof. Let s = ti − ti−1. If r0 ≤ s then by 3.2,

H−(r0+s)(P ∗
• ) = Extr0

(
Pti−1

Bti−1

, A

)
is not in B.

So, assume r0 − s > 0. The latter part of assertion (2) would follow if Extj
(

Pti

Bti
, A

)
had 

finite projective dimension, which may not always be the case. The long exact sequence of 

Ext modules corresponding to the usual exact sequence 0 Hti
Pti

Bti
Bti−1 0

gives us that:

•

Extl(Bti−1, A) ∼−→ Extl
(
Pti

Bti

, A

)
∀l �= ρi, ρi + 1.

• There is a 5-term sequence

0 Extρi(Bti−1, A) Extρi

(
Pti

B1
, A

)
ιi Extρi (Hti , A) ∂

Extρi+1(Bti−1, A) Extρi+1
(

Pti

Bti
, A

)
0

We break the proof into various cases.
(Case r0 − ρi < s): So, 1 ≤ r0 − s < ρi. We have

∀ k ≥ 1 Extk(Bti−1, A) ∼= Extk+s

(
Pti−1 , A

)
.

Bti−1
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So, from the long exact sequence above, we extract the following row:

0 Extr0
(

Pti−1
Bti−1

, A
)

Extr0−s
(

Pti

Bti
, A

)
0

With r1 = r0 − s, our assertion is satisfied.
(Case ρi ≤ r0 − s): It follows from the long exact sequence of the ext modules

∀1 ≤ j < ρi Extj
(
Pti

Bti

, A

)
∼= Extj+s

(
Pti−1

Bti−1

, A

)

For j < ρi, we have j + s ≤ ρi + s < r0. Therefore,

∀1 ≤ j < ρi, ℘ ∈ X(gi
j) Extj

(
Pti

Bti

, A

)
℘

has FPD and is CM. (I)

By the grade Lemma 2.11 grade
(

Extρi

(
Pti

Bti

, A

))
= ρi (II )

So, giρi
= ρi and we have

∀ ℘ ∈ X(ρi) Extρi

(
Pti

Bti

, A

)
℘

∼= Extρi (Hti , A)℘ is in B. (III ).

We will show that E := Extρi

(
Pti

Bti
, A

)
is not in B. If E has infinite projective dimension, 

then E is not in B. So, we will assume E has finite projective dimension. For convenience, 
we use notations

K = Extρi+s
(

Pti−1
Bti−1

, A
)
E = Extρi

(
Pti

Bti
, A

)
, C = image(ι),

H1 = Extρi (Hti , A) , B = image(∂), K ′ = Extρi+1+s
(

Pti−1
Bti−1

, A
)
,

E′ = Extρi+1
(

Pti

Bti
, A

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1. Now assume K �= 0. So, we have an exact sequence

0 K E C 0

Now g := grade(K) ≥ ρi + s and hence C �= 0. Let ℘ ∈ Supp(K) and height(℘) = g. 
Since ρi+s ≤ r0, (K)℘ has finite projective dimension. It follows that proj dim(K℘) =
g. So, C℘ also has finite projective dimension. From the sequence of Tor modules, it 
follows that proj dim(E℘) = g ≥ ρi + s. So, proj dim(E) ≥ ρi + s > ρi. Hence E is 
not in B. With r1 = ρi the assertion of the theorem is valid.
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2. Assume K = 0 and K ′ �= 0. Since K = 0, we have r0 − s ≥ ρi + 1. Also, E ∼−→ C. 
The five term exact sequence reduces to

0 E H1 K ′ E′ 0

We have g′ := grade(K ′) ≥ ρi + 1 + s.
Assume B �= 0: Then, g := grade(B) ≥ grade(K ′) ≥ ρi + 1 + s. Now, we have an 
exact sequence

0 E H1 B 0

Since E, H1 have finite projective dimension, so does B. Let ℘ ∈ Supp(B) and 
height(℘) = g. Then dim(A℘) = g and proj dim(B℘) = g ≥ ρi +1 +s ≥ ρi +2. Hence 
it follows that proj dim(E℘) = g − 1 ≥ ρi + s. So, proj dim(E) ≥ ρi + s and hence E
is not in B. In this case also, with r1 = ρi the assertion of the theorem is valid.
Assume B = 0: Then we get that E ∼= H1, K ′ ∼= E′ and choosing r1 = r0 − s proves 
the assertion.

3. Assume K = K ′ = 0. In this case, ι : E −→ H1 is an isomorphism, E′ = 0 and hence 
r0 − s ≥ ρi + 2. The assertion of the theorem is satisfied with r1 = r0 − s.

The proof is complete. �
Theorem 3.6. Let P• be a complex in ChB(P(A)) with notations as in 3.3. Then, P ∗

• is in 

Chb
B(P(A)) if and only if ιj : Extρj

(
Ptj

Btj

, A

)
−→ Extρj

(
Htj (P•), A

)
is an isomorphism 

∀j.

Proof. Assume that ιj is an isomorphism for all j. Then by Theorem 3.3,

∀k ≥ 1, ∀j Extk
(
Ptj

Bj
, A

)
is in B.

So, by 3.2,

∀tj < t ≤ tj+1 Ht(P ∗
• ) = Extt−tj

(
Ptj

Bj
, A

)
is in B.

So, P ∗
• is in Chb

B(P(A)).
Now suppose ιj is not an isomorphism for some j. Arguing exactly as in the proof of 

Theorem 3.3, we assume that A is local and P• is indecomposable. Now, by Corollary 3.4, 

there exists r ≥ 1 and i such that Extr
(
Pti

Bti

, A

)
is not in B, and

∀℘ ∈ X

(
gi−1
j

)
, ∀1 ≤ j ≤ r Extj

(
Pti

B
,A

)
is in B.
ti ℘
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This is exactly the hypothesis of Proposition 3.5, which guarantees us that either there 
exists a homology Hr(P ∗

• ) which is not in B or that one obtains r1 ≥ 1 so that the above 
hypothesis repeats for i + 1. Note that for i = n, the only possibility is that there exists 
a homology Hr(P ∗

• ) which is not in B. Thus, by induction, the above process repeats 
until we produce a homology Hr(P ∗

• ) which is not B. So, P ∗
• is not in Chb

B(P(A)). The 
proof is complete. �

The following is a version of 3.6 for complexes with CMFPD homologies.

Corollary 3.7. Let P• be a complex in Chb(P(A)) such that, for all maximal ide-
als m and all degrees t, Ht(P•)m is a CMFPD module, if nonzero. We denote 
ρt(m) := proj dim(Ht(P•)m). Then the dual P ∗

• also has the same property, if and 

only if, ιt : Extρj(m)
(
Pt

Bt
, A

)
m

−→ Extρt(m) (Ht(P•), A)
m

is an isomorphism, whenever 

Ht(P•)m �= 0.

4. Computations on dualizable complexes

In fact, we can say considerably more about the homologies of P ∗ under the above 
conditions. We first note that another look at the long exact Ext sequence along with 
induction, gives us the following theorem.

Theorem 4.1. Let A be a CM ring. Suppose P• is a complex in Chb
B(P(A)) such that 

P ∗
• ∈ Chb

B(P(A)). Then, with notations as in the equivalence Theorem 3.6,

1. ∀ t, we have

∀ 1 ≤ i, j = 0, 1, . . . , n Exti
(
Ptj

Btj

, A

)
= 0 or are in B.

Also, Ext0
(

Pt

Bt
, A

)
has finite projective dimension.

2. Further,

Exti
(
Ptj

Btj

, A

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Exti+sj
(

Ptj−1
Btj−1

, A
)
∀ 1 ≤ i < ρj − sj

Extρj−1
(
Htj−1 , A

)
for i = ρj − sj

0 ∀ ρj−1 − sj < i < ρj
Extρj

(
Htj , A

)
for i = ρj

0 ∀ ρj < i

3. For all t, the homologies Ht(P ∗
• ) are in B. In fact, for tj−1 < t ≤ tj,

H−t(P ∗
• ) = Extt−tj−1

(
Ptj−1

Btj−1

, A

)
.
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Proof. The equation in (3) follows immediately from Proposition 3.2. So it is enough to 
prove (1, 2).These statements are clearly true for j = 0. We assume that (1, 2) are valid 
upto j and prove them j + 1.

By the equivalence Theorem 3.6,

ιj+1 : Extρj+1

(
Ptj+1

Btj+1

, A

)
∼−→ Extρj+1

(
Htj+1 , A

)
is an isomorphism.

We have,

Exti
(
Ptj+l

Btj+l
, A

)
� Exti+l

(
Ptj

Btj

, A

)
, ∀ i ≥ 1, l �= ρj+1

and

Exti
(
Btj+l, A

)
� Exti+l+1

(
Ptj

Btj

, A

)
, ∀ i ≥ 1, 1 ≤ l < sj+1

which are hence in B by induction.
As in the previous proofs, looking at the long exact Ext sequence corresponding to 

0 Htj+1

Ptj+1
Btj+1

Btj+1−1 0 along with induction, gives us all 

the statements in (1, 2) except the finite projective dimension of Ext0
(

Ptj+1
Btj+1

, A
)
. An 

inductive argument with the exact sequence

0 Ext0
(

Ptj+l

Btj+l
, A

)
Ext0

(
Ptj+l, A

)
Ext0

(
Btj+l, A

)
Ext1

(
Ptj+l

Btj+l
, A

)
0

for 0 ≤ l < sj+1 and 
Ptj+l

Btj+l

∼−→ Btj+l−1, 0 < l < sj+1 gives us that Ext0
(
Ptj+1−1

Btj+1−1
, A

)
has finite projective dimension. Then

0 Ext0
(
Btj+1−1, A

)
Ext0

(
Ptj+1
Btj+1

, A

)
Ext0

(
Htj+1 , A

)
Ext1

(
Btj+1−1, A

)
0

Since all the other terms have finite projective dimension, so does Ext0
(
Ptj+1

Btj+1

, A

)
. The 

proof is complete. �
We give some explicit formulas for nonzero ext-modules.

Corollary 4.2. Let A, P• and all the notations be as in Theorem 4.1. Let j ≥ 0 be an 
integer. For r = 0, . . . , j let

τ jr = ρr − (sj + · · · + sr+1) = ρr − (tj − tr).
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Then

Exti
(
Ptj

Btj

, A

)
=

{
Extρr (Htr(P•), A) if i = τ jr ≥ 1
0 if 1 ≤ i �= τ jr ∀ r.

Proof. Fix j and note that τ jr > τ jr−1 for all r = 1, . . . , j. First, for i = τ jj = ρj , by 
Theorem 4.1, we have

Exti
(
Ptj

Btj

, A

)
= Extρj

(
Htj , A

)
.

For i = τ jj−1 = ρj−1 − sj by theorem 4.1, we have

Exti
(
Ptj

Btj

, A

)
= Extρj−1−sj

(
Ptj

Btj

, A

)
= Extρj−1

(
Htj−1 , A

)

Also, by Theorem 4.1, Exti
(

Ptj

Btj
, A

)
= 0 for τ jj−1 < i < τ jj . Now, we use induction. 

Assume the theorem is established ∀ i ≥ τ jr+1. We prove it for τ jr+1 < i ≤ τ jr . For 
τ jr = ρr − (sr+1 + · · · + sj) ≤ i it follows inductively that

Exti
(
Ptj

Btj

, A

)
= Exti+sj

(
Ptj−1

Btj−1

, A

)
= Exti+sr+1+···+sj

(
Ptr

Btr

, A

)

The proof is complete by application of Theorem 4.1. �
We compute the homologies of the dual for complexes as in Theorem 4.1.

Corollary 4.3. Let P• be a complex as in Theorem 4.1. Then,

H−t(P ∗
• ) =

{
Extρr (Htr(P•), A) if t = tr + ρr for some r

0 otherwise.

Proof. We assume tj < t ≤ tj+1. By 3.2,

H−t(P ∗
• ) = Extt−tj

(
Ptj

Btj

, A

)

By 4.2, H−t(P ∗
• ) is non-zero, only if

t− tj = τ jr = ρr − (sj + · · · + sr+1).

That means, if

t = ρr + [tj − (sr+1 + sr+2 + · · · + sj)] = tr + ρr.
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For t = tr + ρr, we have

H−t(P ∗
• ) = Extρr−(sj+···+sr+1)

(
Ptj

Btj

, A

)
= Extτ

j
r

(
Ptj

Btj

, A

)
= Extρr (Htr , A) .

The proof is complete. �
5. Some dualizable categories of complexes

We consider some special categories of complexes and use the equivalence condition 
in the previous section to show that they are closed under duality. We also show that 
these conditions are almost the best we can hope for. We begin with some initial lemmas 
that will be used in the subsequent proofs.

Lemma 5.1. Let A be a noetherian ring and

Ps Ps−1 · · · P1 P0

be a complex of projective A-modules. Assume that the complex does not split at degree 
i = 1, . . . , s − 1. Then,

s ≤ proj dim
(
P0

B0

)
− 1.

Proof. Write ρ = proj dim
(

P0
B0

)
. We have the exact sequence

0 Bs−1 Ps−1 · · · P1 P0
P0
B0

0

If s ≥ ρ then Bs−1 is projective which contradicts the hypothesis that the complex is 
not split at i = 1, . . . , s − 1. Hence, the proof is complete. �
Lemma 5.2. Let (A, m) be a noetherian local ring. Let P• be an indecomposable complex 
in Chb

B(P(A)). Let t0 < t1 < t2 < · · · be the list of all the degrees so that Hti(P•) �= 0. 
Let ρi = proj dimHti . Assume

∀ j ∈ Z, ρj − ρj+1 ≤ tj+1 − tj =: sj+1

Then,

∀ j ∈ Z, proj dimHtj = proj dim
(
Ptj

)
.

Btj
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Conversely, for any fixed j:

proj dim
(
Ptk

Btk

)
= ρk for k = j, j + 1 =⇒ ρj − ρj+1 ≤ sj+1 + 1.

Proof. We assume t0 = 0. Since P• is indecomposable, H0 = P0
B0

. So the lemma holds 
trivially in this case. Now assume that the lemma holds upto tj . Note that if Ptj

Btj
is 

projective, then so is Btj . By our assumption of indecomposability, 2.3 tells us that 
this is possible only if Ptj+1 = Btj and this is the final term in the complex, in which 
case we are already done by the induction hypothesis (there is no tj+1). So assume that 
proj dim

(
Ptj

Btj

)
≥ 1 and we will prove the equality for tj+1. Then

proj dim(Btj ) = proj dim
(
Ptj

Btj

)
− 1 = ρj − 1.

Inductively, we have

proj dimBtj+1−1 = (ρj − 1) − (tj+1 − 1 − tj) = ρj − sj+1 ≤ ρj+1.

Consider the exact sequence

0 Htj+1

Ptj+1
Btj+1

Btj+1−1 0

We write the long exact sequence:

0 Torρj+1+1

(
Ptj+1
Btj+1

, A/m
)

Torρj+1+1
(
Btj+1−1, A/m

)

Torρj+1

(
Htj+1 , A/m

)
Torρj+1

(
Ptj+1
Btj+1

, A/m
)

Torρj+1

(
Btj+1−1, A/m

)

Since the top right term vanishes, and the bottom left term is non-zero, the middle term 
in the second row cannot vanish. It follows that proj dim

(
Ptj+1
Btj+1

)
= ρj+1.

For the converse, proj dim
(

Ptj

Btj

)
= ρj and hence proj dim

(
Btj+1−1

)
= ρj − sj+1. 

Then the above long exact sequence gives us that

ρj − sj+1 = proj dim
(
Btj+1−1

)
≤ ρj+1 + 1.

This completes the proof. �
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Theorem 5.3. Let A be a CM ring. Let P• be a complex in Chb
B(P(A)). Let t0 < t1 <

t2 < · · · < tn be the list of the non-vanishing homologies. Let ρi = proj dimHti > 0. 
Assume

ρj − ρj+1 < tj+1 − tj =: sj+1, j = 0, 1, 2, . . . , n− 1.

Then, P ∗
• ∈ Chb

B(P(A)).

Proof. By equivalence Theorem 3.6, we only need to prove the homomorphisms ιj are 
isomorphisms. Note that the condition

ρj − ρj+1 < tj+1 − tj =: sj+1, j = 0, 1, 2, . . . , n− 1

localizes and restricts to indecomposable summands of the complex for the subsequence 
of {0, 1, 2, . . . , n − 1} consisting of nonzero homologies, because ρj − ρk < tk − tj for 
all j < k. Hence, we can assume that A is local and P• is indecomposable. Note that 
Ht0 = Pt0

Bt0

is an isomorphism and hence,

ι0 : Extρ0

(
Pt0

Bt0

, A

)
→ Extρ0 (Ht0 , A)

is an isomorphism. By Lemma 5.2, proj dim
(

Ptj

Btj

)
= ρj∀ j. Hence by Lemma 5.1, we 

have sj+1 = tj+1 − tj ≤ ρj − 1 (which also ensures that ρj ≥ 2) and proj dimBtj+1−1 =
ρj − sj+1 < ρj+1. Thus, the long exact sequence corresponding to the exact sequence: 

0 Htj+1

Ptj+1
Btj+1

Btj+1−1 0 gives us that

ιj+1 : Extρj+1

(
Ptj+1

Btj+1

, A

)
∼−→ Extρj+1

(
Htj+1 , A

)
.

Hence, by the equivalence Theorem 3.6, we get that P ∗
• ∈ Chb

B(P(A)). The proof is 
complete. �
Corollary 5.4. Let P• be a complex as in Theorem 4.1. Suppose u, v be integers and

H−u(P ∗
• ) �= 0, H−v(P ∗

• ) �= 0, and H−t(P ∗
• ) = 0 ∀ u < t < v.

Then

proj dimH−v(P ∗
• ) − proj dimH−u(P ∗

• ) < v − u.
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Proof. Note that (tr+ρr) −(tr−1+ρr−1) = sr+ρr−ρr−1 > 0. So, by 4.3, u = tr−1+ρr−1, 
v = tr + ρr for some r. Also, v − u = sr + ρr − ρr−1. From, 4.3,

H−v(P ∗
• ) = Extρr (Htr , A) , H−u(P ∗

• ) = Extρr−1
(
Htr−1 , A

)
.

So,

proj dimH−v(P ∗
• ) = ρr, and proj dimH−u(P ∗

• ) = ρr−1

Therefore,

proj dimH−v(P ∗
• ) − proj dimH−u(P ∗

• ) = ρr − ρr−1 < ρr − ρr−1 + sr = v − u.

This completes the proof. �
Putting together all the above theorems, lemmas and corollaries gives us the following 

theorem:

Theorem 5.5. Let A be a CM ring. Let C be the additive subcategory of Chb
B(P(A))

generated by complexes P• which are satisfy the condition that:

ρj − ρj+1 < tj+1 − tj =: sj+1, j = 0, 1, 2, . . . , n− 1

where the non-zero homologies of P• are in degrees t0 < t1 < t2 < · · · < tn and ρi =
proj dimHti > 0. Then C is closed under the duality HomA( , A).

We give some more easy consequences of the above results.

Theorem 5.6. Let A be a CM ring and let

B(k) = {P• ∈ Chb
B(P(A) : ∀ i Hi(P•) = 0 or proj dim(P•) = k}.

Then the category Chb
B(k)(P(A)) is an exact category closed under the duality

HomA( , A).

Remark 5.7. When k = d, the above category B(d) is exactly the category of finite length 
modules with finite projective dimension and in [4], a dévissage theorem for B(d) was 
proved.

We end with a lemma that seems to suggest that the conditions in Theorem 5.5 are 
almost optimal for duality to hold.

Lemma 5.8. Suppose P• : · · · P1 P0 · · · is a complex of projective 
A-modules, such that H0(P•), H1(P•) ∈ B. Let ρ1 = proj dimH1 and ρ0 = proj dimH0. 
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Assume ρ0 = ρ1 + 1 and proj dimB0 ≤ ρ0 − 1 = ρ0. Then Extρ1
(

P1
B1

, A
)

is not Cohen–
Macaulay.

Proof. Consider the exact sequence 0 H1
P1
B1

B0 0 . Since 

Extρ1 (B0, A) = Extρ1−1 (H1, A) = 0, from the corresponding long exact sequence of 
the ext modules, we have an exact sequence

0 Extρ1 (B0, A) Extρ1
(

P1
B1

, A
)

Extρ1 (H1, A) 0

Since proj dim(B0) ≤ ρ0 − 1 = ρ1, we have proj dim(Z0) ≤ ρ0 − 2. So, form 
the exact sequence 0 B0 Z0 H0 0 we have Extρ1 (B0, A) ∼=
Extρ0 (H0, A). Now,

proj dim (Extρ0 (H0, A)) = ρ0 = ρ1 + 1, proj dim (Extρ1 (H1, A)) = ρ1

It follows

proj dim
(

Extρ1

(
P1

B1
, A

))
= ρ0 = ρ1 + 1.

Also, the height of the annihilator of the middle term is the minimum of that of the 
other two. So,

grade
(

Extρ1

(
P1

B1
, A

))
= ρ0 = ρ1.

Therefore, by 2.7, Extρ1
(

P1
B1

, A
)

is not Cohen–Macaulay. The proof is complete. �
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