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For quasi-projective schemes X over affine schemes Spec(A), 
resolving subcategories A of Coh(X) were considered. The 

equivalences Db(Mk
g(A ))

∼
ι

Dk
g ((M0

g(A )) Dk
g (A )

ι′

∼

of derived categories were established, where Mk
g(A ) = {F ∈

Coh(X) : dimA (F) < ∞, grade(F) ≥ k} and Dk denote the 
corresponding filtration of the derived category.
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1. Introduction

The main theorem in this article establishes equivalences of certain subcategories 
of the bounded derived category Db(Coh(X)) of complexes of coherent sheaves over a 
quasi-projective scheme X over a noetherian affine scheme Spec(A). These subcategories 
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concern the derived categories of resolving subcategories A of Coh(X). For a definition of 
such a resolving subcategory we refer to (3.1). The category V (X) of locally free sheaves 
on X would be the most familiar example of a resolving subcategory. Literature regarding 
the resolving subcategories outside the realm affine schemes is scarce. Given such a 
resolving subcategory A of Coh(X) and integer k ≥ 0, the main theorem establishes the 
following equivalence of categories

Db(Mk
g(A )) ∼

ι
Dk

g ((M0
g(A )) Dk

g (A )ι′

∼

where Mk
g(A ) denotes the category of sheaves F with dimA (F) < ∞ and grade(F) ≥ k, 

Db(∗) denotes the bounded derived category and Dk
g (∗) denotes the subcategory of com-

plexes in Db(∗) with grade of the homologies at least k. The statement would be most 
intuitive, when A = V (X) and X is locally Cohen–Macaulay, in which case grade, lo-
cally, is the height of the annihilator. If A = MCM (X) is the category of maximal 
Cohen–Macaulay sheaves on X, then it follows

Db(Cohk
g(X)) ∼

ι
Dk

g (Coh(X))) Dk
g (MCM (X))ι′

∼ .

The equivalence Db(Cohk
g(X)) ∼

ι
Dk

g (Coh(X))) is a result of Keller [6], where fil-
tration by codimension of support was used, instead of grade.

In the case, when X = Spec(A) is affine and Cohen–Macaulay, Sane and Sanders 
[11] established these equivalences. Methods in [11] relies on a construction of a map 
K• −→ M• of complexes of modules from some direct sum of (exact) Koszul complexes 
K• to a given complex M• of modules, so that the nonzero homology of K• surjects 
onto the corresponding homology of M•. The construction was originally due to H.-B. 
Foxby [3] that appeared in a preprint. By now, several other expositions and versions 
of the same is available in the literature [4,15,10,11]. To meet the goals of this paper, a 
similar morphism of complexes of coherent sheaves on quasi-projective schemes X was 
constructed (2.3). Other than that, the proof of the main theorem adapts the inductive 
arguments in [11], which involves further technicalities and finesse in this non-affine 
situation. Overall, these methods emanate from the methodologies developed in [7–9] in 
the context of Witt theories, by constructing cones, with smaller width, of morphisms 
of complexes. There are multiple applications of these equivalences to Witt theory and 
K-theory that we address in Section 4. While such applications are routine in some cases, 
they encompass a wide range of categories (see Section 4.3).

Regarding layout of this article, Section 2 deals with extending the morphism of 
Foxby [3] to quasi-projective schemes. The main equivalence theorem was considered 
in Section 3. Some of the consequences were discussed in Section 4. In much of the 
arguments, there would be no loss of generality if the complexes are given a translation. 
That is why, in many statements and proofs, we considered degree zero as the generic 
reference degree.
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2. The Foxby morphism

In this section we extend the chain complex map, originally due to Foxby [3], to 
quasi-projective schemes. Following is a routine extension of the process of selecting 
regular sequences in an ideal in a ring. Refer to (3.1) for the definition of grade, used in 
this section.

Lemma 2.1. Let X be an open subset of X̃ := Proj(S), for some noetherian graded ring 
S and dimX = d. Let Y ⊆ X be a closed subset of X, with grade(OY , X) ≥ k. Let 
V (I) = Y be the closure of Y , where I is the homogeneous ideal of S, defining Y . Then, 
there is a sequence of homogeneous elements f1, . . . , fk ∈ I such that fi1 , . . . , fij induce 
regular S(℘)-sequences ∀ ℘ ∈ Y ⊆ X, and ∀ 1 ≤ i1 < i2 < · · · < ij ≤ k.

Proof. We only do the inductive step. Now suppose t < k and there is a se-
quence f1, . . . , ft ∈ I that induce regular sequences in S(℘) ∀ ℘ ∈ Y . We let Pt ={
℘ ∈ X̃ : ℘ ∈ Ass(fi1 , . . . , fis) ∩X : 1 ≤ i1 < · · · < fs ≤ t

}
. Claim, for ℘ ∈ Pt, I � ℘. 

To see this, suppose I ⊆ ℘ ∈ Ass(fi1 , . . . , fis) ∩X ⊆ Pt. Simplifying notations, assume 
I ⊆ ℘ ∈ Ass(f1, . . . , fs) ∩X. Then, I℘ ⊆ ℘S(℘) ∈ Ass(f1, · · · , fs); which is a contradiction 
because grade(I(℘)) ≥ k. So, we can choose ft+1 ∈ I \

⋃
Pt. The proof is complete. �

We recall the following definition for the purpose of setting up notations.

Construction 2.2. Suppose S = ⊕Sn is a noetherian commutative graded ring with 
S0 = A. Let f1, f2, . . . , fk ∈ Sκ be homogeneous with deg(fi) = κ for all i. Then Koszul 
complex K•(f1, f2, . . . , fk) of graded modules is defined, as usual, as a complex of graded 
modules. By shifting degrees, it is assumed that all maps are of degree zero. Sheafifying, 
K•(f1, . . . , fk), we get the Koszul complexes K•(f1, . . . , fk), of locally free sheaves, on 
Proj(S) = X̃. Recall, for 0 ≤ s ≤ k, Ks(f1, . . . , fk) =

⊕
1≤i1<···<ts≤k OX̃(−sκ)ei1 ∧ · · ·

∧ eis . Generally, K•(f1, f2, . . . , fk) is exact only on at points ℘ ∈ X̃ such that 
f1, f2, . . . , fk induces a regular sequence in Ox,℘ = S(℘). We will often, write K• :=
K•(f1, . . . , fk), and K• := K•(f1, . . . , fk). However, we will be working with Koszul 
complexes of fn

1 , . . . , f
n
r , of varying exponent n and length r.

The following is the extension of Foxby’s construction to quasi-projective schemes.

Theorem 2.3. Suppose X is a quasi-projective scheme over a noetherian affine scheme 
Spec(A), with dimX = d. Let

Gk+1 Gk
∂k

· · · Gr
∂r

Gr−1 · · · G0 G−1

be a complex of coherent OX-modules. Assume ∀ i = 0, . . . , k grade(OYi
, X) ≥ k, where 

Yi = Supp(Hi(G•)) ⊆ X. Then, there is a morphism ν• : E• −→ G• where
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E• : 0 Ek · · · Er
dr

Er−1 · · · E0 0

is in Chb(V ) such that

1. Hi(E•) = 0 ∀ i = 0 and H0(ν) : H0(E•) � H0(G•) is surjective.
2. Exti (H0(E•),OX) = 0 ∀ i = 0 and dimA (H0(E•)) = k. In fact, E• would be a direct 

sum of twisted Koszul complexes that resolves F := H0(E•).

Proof. First X is an open subset of X̃ = Proj(S), where S = A ⊕ S1 ⊕ S2 ⊕ · · · =
A[x0, x2, . . . , xN ] is a graded ring and deg(xi) = 1. Assume that the closure X = X̃. It 
would seem more intuitive (though avoidable), if we extend G• to a complex (see [2, II §5])

F• : 0 Fn · · · Fr
∂r

Fr−1 · · · F0 F−1

over X̃. Let Y =
⋃

Supp(Hi(G•)) and Ỹ =
⋃

Supp(Hi(F•)). Then, Ỹ = V (I) for some 
homogeneous defining ideal I in S. By (2.1), there is a sequence f1, . . . , fk such that 
they induce a regular sequence in S(℘) for all ℘ ∈ Y . Assume deg(fi) = κ is constant 
and fi kills all the homologies Hi(F•). For the rest of this proof, let k be fixed. Write 
ϕi,m = fm

i . So, deg(ϕi,m) = mκ. Let K•,m = K(ϕ1,m, . . . , ϕk,m) be the graded Koszul 
complex. Then Kk,m = S(−kmκ).

We denote Bi(F•) = image(∂i+1) ⊆ Zi(F•) = ker(∂i) ⊆ Fi and use similar notations 
for any complex. No generality is lost, if we replace G• by G•(m) := G• ⊗OX̃(m) for any 
m ∈ Z. So, we will assume Bi(F•), Zi(F•), Fi are globally generated and (see [2, III.5.2]) 
H1(X̃, Zi (F•(n))) = 0 ∀ n ≥ 0. Now let s ∈ Γ(X̃, Z0(F)) and α0 : OX̃ −→ Z0(F)
sending 1 �→ s. Since Γ(X̃, Z0(F)) finitely generated, it would be enough to extend α0
as required.

For all 1 ≤ r ≤ k, m ≥ r and 1 ≤ i1 < . . . < ir, denote K•,m,i1···ir :=
K•(ϕi1,m, . . . , ϕir,m). By induction, we will prove that

∃ a map ν : K•,m,i1···ir −→ F• such that ν0 = α0. (1)

First, we prove it for r = 1. Since fiHi(F•) = 0, the image(fm
i α0) ⊆ B0(F•). It would 

suffice to prove it for i = 1. Consider the diagram

OX̃(−mκ)
fm
1 OX̃

α0

F1
d1

B0(F•) F0

The twisted map fm
1 α0 ⊗OX̃(mκ) : OX̃ −→ B0(F•)(mκ)) is given by the global section 

ε := fm
1 α0 ⊗ OX̃(mκ)(1) ∈ Γ(X̃, B0(F•)(mκ)) = H0(X̃, B0(F•)(mκ)). Consider the 
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exact sequence 0 Z0(F•)(mκ)) F0(mκ) B0(F•)(mκ)) 0, and 

the cohomology exact sequence:

H0(X̃,F0(mκ)) H0(X̃, B0(F•)(mκ)) H1(X̃, Z0(F•)(mκ)) = 0.

So, ε ∈ H0(X̃, B0(F•)(mκ)) lifts to a section ε′ ∈ H0(X̃, F0(mκ)). Define α′
1 : OX̃ −→

F(mκ) by sending 1 �→ ε′. Then, α1 = α′
1 ⊗ OX̃(−mκ) fits in the above commutative 

diagram. This completes the proof for r = 1.
To do the induction, we assume that the statement (1) has been proved for r =

k − 1. For all j = 1, . . . , k denote K•,m,ĵ := K•(ϕ1,m, . . . , ϕj−1,m, ϕj+1,m, . . . , ϕn,m). By 
induction hypothesis, for m ≥ k − 1, j = 1, . . . , k, we have a map K•,m,ĵ −→ F• as 
in (1). Combining all these we obtain the following commutative diagram:

0 OX̃(−mkκ)

β

⊕k
j=1 OX̃(−m(k − 1)κ)

αk−1

· · · OX̃

α0

0

Fk Bk−1(F•) Fk−1 · · · F0 F−1

(2)

Here the top line is the Koszul complex K(ϕm,1, . . . , ϕm,k). A priory, β maps into 
Zk−1(F•). However, β maps into Bk−1(F•), which needs a proof. This is proved lo-
cally and follows from the proof in the affine case (e.g. [11] has an explicit proof ). 
The map β(mkκ) : OX̃ −→ Bk−1(F•)(mkκ) is given by a global section ε ∈
H0 (X̃, Bk−1(F•)(mkκ)

)
. Consider the exact sequence

0 Zk(F•)(mkκ) Fk(mkκ) Bk−1(F•)(mkκ) 0

and its homology exact sequence

H0 (X̃,Fk(mkκ)
)

H0 (X̃, Bk−1(F•)(mkκ)
)

H1 (X̃, Bk−1(F•)(mkκ)
)

= 0.

So, ε lifts to a global section ε′ ∈ H0 (X̃,Fk(mkκ)
)
. Define α′ : OX̃ −→ Fk(mkκ) by 

sending 1 �→ ε′. Let αk = α′(−mkκ), which fits in the commutative diagram (2). While 
the Koszul complex on the top line of (2) need not be exact on X̃, its restriction on X
is. The proof is complete. �
Remark 2.4. In the proof of (2.3), one had the choices of the sequence f1, . . . , fk, as 
required above. We will exploit this flexibility later.
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3. The equivalence theorem

Before we state and prove the equivalence theorem, we set up some notations.

Notations 3.1. Throughout this article, X will denote a quasi-projective scheme over a 
noetherian affine scheme Spec(A) and d := dimX. We introduce further notations.

1. Throughout, A will denote a resolving subcategory of Coh(X) and V (X) will de-
note the category of all locally free sheaves on X. Recall [8] a subcategory A of 
Coh(X) is called a resolving subcategory if it is closed under direct summand, exten-
sions and kernel of epimorphisms. However, we will further assume that all resolving 
subcategories A , we consider, contain V (X). Denote M(A ) = {F ∈ Coh(X) :
dimA (F) < ∞}.

2. In this article, we consider filtration of Coh(X) and M(A ) by grade. Recall, for 
F ∈ Coh(X), grade(F) := min{t : Extt(F , OX) = 0}. For integers k ≥ 0, 
denote Cohk

g(X) := Cohk(X) := {F ∈ Coh(X) : grade(F , OX) ≥ k} and 
Mk

g(A ) := Mk(A ) := {F ∈ M(A ) : grade(F , OX) ≥ k}. So, we have a filtra-
tion M(A ) = M0

g(A ) ⊇ M1
g(A ) ⊇ · · · ⊇ Md

g(A ) ⊇ 0. Throughout, we will strictly 
be using this filtration by garde. Note that Mk

g(A ) is a Serre subcategory (2 out of 3) 
of M(A ). When X is locally Cohen–Macaulay, this filtration is same as the filtration 
by co-dimension of the support. When A = V (X), M(A ) = M0(A ) is the category 
of coherent sheaves in Coh(X), with finite locally free dimension. The bounded de-
rived category of an exact category E will be denoted by Db(E ). Similarly, Chb(E )
will denote the category of chain complexes. Most importantly, for E = A , M(A ), 
let Dk

g (E ) denote the derived subcategory of Db(E ), of complexes E• such that all 
the homologies Hi(E•) ∈ Cohk

g(X). (Note the difference between two fonts D, D .)

The following is the statement of the main equivalence theorem.

Theorem 3.2. Suppose X is a quasi-projective scheme over a noetherian affine scheme 
Spec(A) and dimX = d. Consider the commutative diagram of natural functors

Db(Mk
g(A )) ι

Dk
g ((M(A )) Dk

g (A )ι′

Db(M(A )) Db(A )
ι′′

(3)

Then, the functors ι, ι′, ι′′ are natural equivalences.

Proof. The ι′′ is the case of k = 0, of ι′. Also ι′ is an equivalence, where the inverse 
functor is obtained by going through the double complexes. So, we are left with proving 
the ι is an equivalence. This will be done by the following propositions. �
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The following version of [8, Lemma 5.3] would be needed for the proofs below.

Lemma 3.3. Let C be an abelian category. Let F•, G• be two objects in Db(C ). Assume 
(1) Hr(F•) = 0 ∀r ≤ n0 − 1, (2) Hr(G•) = 0 ∀r ≥ n0. Then, MorDb(C )(F•, G•) = 0. 
Further, if V is a resolving subcategory of C , then same holds for V and M(V ).

Proof. Now, we prove the first part. Let η• : F• −→ G• be a morphism We can assume 
n0 = 0 and η• is a map of complexes (denominator free). Further, by replacing by a 
quasi-isomorphic complex, we assume Fi = 0 ∀ i ≤ −1. Define the subcomplex G′

• ↪→ G•
by setting G′

i = Gi ∀ i ≥ 1, G′
0 = ker(G0 −→ G−1) and G′

i = 0 ∀ i ≤ −1. Since η• factors 
through G′

•, by replacing G• by G′
•, we can assume Gi = 0 ∀ i ≤ −1 and G• is exact. 

Hence, G• ∼= 0 in Db(C ) and η• = 0. Note, V −→ M(V ) is an equivalence of categories 
and the same proof works in Db(M(V )). The proof is complete. �

Throughout the rest of this article, given an object F ∈ Mk(A ) we will use the same 
notation F to denote the corresponding complex in Db(Mk(A )), with single nonzero 
term F at degree zero. It would be clear from the context whether F denotes an object 
or the complex.

Proposition 3.4. The functor ι, in diagram (3), is essentially surjective and full.

Proof. For a complex F• ∈ Chb(Coh(X)), we say that width(F•) ≤ r, if Hi(F•) = 0
unless m ≥ i ≥ n − r for some integer m, n. By induction on r, we prove

1. Given F• ∈ Dk
g (M(A)), with width(F•) ≤ r, F• ∼= ι(F̃•) for some F̃• ∈ Db(Mk

g(A )).
2. Given F•, G• ∈ Db(Mk

g(A )), with width(F•⊕G•) ≤ r the map MorDb(Mk
g(A ))(F•, G•)

−→ MorDk
g (M(A ))(F•, G•) is surjective.

Let r = 0 and F• be as in (1). We can assume that Hi(F•) = 0 for all i = 0. We can 
further assume that Fi = 0 ∀ i ≤ −1. It follows, H0(F•) ∈ Db(Mk

g(A )), as a complex 
concentrated at degree zero and ι(H0(F•)) ∼= F•.

Similarly, suppose F•, G• ∈ Db(Mk
g(A )), width(F• ⊕ G•) = 0 and f : F• −→ G• is 

a morphism in Dk
g (M(A )). We have, f = g•t

−1
• : F• W•

g•t• G• , where t• is 
a quasi-isomorphism. It follows that all three can be considered as resolution of their 
homologies. Consider these homologies as complexes, concentrated at degree zero. Hence 
ι(H0(g)H0(t)−1) = g•t

−1
• = f•. This completes the proof for r = 0.

Now suppose r > 0 and F• ∈ Dk
g (M(A )) as in hypothesis (1). We can assume 

F0 = 0 ∀ i ≤ −1 and H0(F•) = 0. By (2.3), there is a complex E• and a morphism 
ν : E• −→ F• such that

1. E• ∈ Chb(V (X)) ⊆ Chb(M(A )) and Ei = 0 unless k ≥ i ≥ 0.
2. Hi(E•) = 0 for all i = 0.
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3. H0(E•) ∈ Mk
g(V (X)); in fact dimA (H0(E•)) = co dim(H0(E•)) = k.

4. H0(ν) : H0(E•) � H0(F•) is surjective.

Consider H0(E•) as complex in Db(Mk
g(A ), concentrated at degree zero. Then, 

ι(H0(E•)) = E•. Embed ν in an exact triangle in Dk
g (M(A )):

T−1Δ•
ν0 E•

ν F•
ν2 Δ• .

The corresponding homology exact sequence yields, ∀ i ≤ 0 Hi(Δ•) = 0, ∀ i ≥ 2
Hi(F•) ∼= Hi(Δ•) and

0 H1(F•) H1(Δ•) H0(E•) H0(F•) 0

is exact. Therefore, width(Hi(Δ•)) < r. By induction, there is a complex Δ̃• ∈
Db(Mk

g(A )) such that ι(Δ̃•) = Δ•. Consider H0(E•) as a complex, concentrated at degree 
zero. It follows width(H0(E• ⊕ T−1(Δ̃•)) < r. Using the induction hypothesis (2), there 
is a morphism η0 : T−1Δ̃• −→ H0(E•) in Db(Mk

g(A )) such that ι(η0) = ν0. Now, embed

ν̃0 in an exact triangle in Db(Mk
g(A )): T−1Δ̃•

η0 H0(E•)
η

U•
η2 Δ̃•. Now 

apply ι to this triangle and complete the diagram:

T−1Δ•

�

ν0 E•
ν

�

F•

� ε

ν2 Δ•

�

T−1ι(Δ̃•)
ι(η0)

ι(H0(E•))
ι(η)

ι(U•)
ι(η2)

ι(Δ̃•)

The isomorphism ε is obtained by properties of triangulated categories. This completes 
the proof of (1).

To complete the inductive step of the proof of (2), suppose f : F• −→ G• be a 
morphism in Dk(Mk

g(A )), where F•, G• ∈ Db(Mk
g(A )) and width(F• ⊕G•) = r. Assume 

Fi = Gi = 0 for all i ≤ −1 and either H0(F•) = 0 or H0(G•) = 0. In either case, by (2.3), 
there are complexes E•, L• and morphisms ν : E• −→ F•, μ : L• −→ G• such that

1. E•, L• ∈ Chb(V (X)) ⊆ Chb(M(A )) and Ei = Li = 0 unless k ≥ i ≥ 0.
2. Hi(E•) = Hi(L•) = 0 for all i = 0.
3. H0(E•), H0(L•) ∈ Mk

g(V (X)); in fact dimA (H0(E•)) = grade(H0(E•)) = k, 
dimA (H0(L•)) = grade(H0(L•)) = k.

4. H0(ν) : H0(E•) � H0(F•) and H0(μ) : H0(L•) � H0(G•) are surjective.
5. Further, in the proof of (2.3), we choose the respective sequences in Ann(F0) ∩

Ann(G0) (more precisely, in their extensions in the closure X̃). This choice, will give 
the following commutative diagrams:
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E•
ν F•

H0(E•)
ν′

F•

,

L•
μ

G•

H0(L•)
μ′

G•

all maps are in Chb(Coh(X)).

6. By replacing L• by E• ⊕ L•, we can further assume that the diagram

E•
ν

ϕ

F•

fH0(E•)
ν′

ϕ

F•

fL• μ
G•

H0(L•)
μ′

G•

commutes. (4)

Embed μ′, ν′ in exact triangles ans follows and obtain the morphism of exact triangles:

T−1Δ•
ν0

T−1η

H0(E•)
ν′

ϕ

F•

f

ν1 Δ•

η

T−1Γ• μ0
H0(L•)

μ′
G• μ1

Γ•

(5)

where the two exact triangles are in Chb(Mk(A )) and the vertical morphisms are in 
Dk

g (M(A )). The induction hypotheses applies to η, ϕ. So, there are morphisms η̃ : Δ• −→
Γ•, ϕ̃ : H0(E•) −→ H0(L•) such that ι(η̃) = η, ι(ϕ̃) = ϕ. This gives the following 
commutative (as clarified below) diagram:

T−1Δ•
ν0

T−1η̃

H0(E•)
ν′

ϕ̃

F•

g

ν1 Δ•

η̃

T−1Γ• μ0
H0(L•)

μ′
G• μ1

Γ•

in Db(Mk
g(A )). (6)

It is clear that image of the left square in Dk
g (M(A )) commutes. Claim that the left 

square commutes. This, a special case of faithfulness, is proved below as Lemma 3.5. 
Therefore, there is a morphism g in Db(Mk

g(A )), obtained by properties of triangulated 
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categories. Apply ι to (6) and compare with (5). With h = f − ι(g) we obtain the 
commutative diagram

T−1Δ•
ν0

0

H0(E•)
ν′

0

F•

h
ζ

ν1 Δ•

0
ε

T−1Γ• μ0
H0(L•)

μ′
G• μ1

Γ•

in Dk(M0(A )),

where ζ and ε are given by weak kernel and weak cokernel properties. Consider the case 
H0(F•) = 0. Then, by Lemma 3.3, Mor(F•, H0(L•)) = 0. Therefore, ζ = 0. Hence h = 0
and f = ι(g). So, it is established, whenever H0(F•) = 0 and width(F•, G•) ≤ r, then 
MorDb(Mk(A ))(F•, G•) � MorDk(M(A ))(F•, G•) is surjective. This fact will be used in the 
next step.

Now, assume H0(F•) = 0 and H0(G•) = 0. width(Δ• ⊕ G•) = r and H0(Δ•) = 0. By 
the above remark, MorDb(Mk(A ))(Δ•, G•) � MorDk(M(A ))(Δ•, G•) is surjective. There-
fore, ι(ε̃) = ε for some ̃ε ∈ MorDb(Mk(A ))(Δ•, G•). So, h = ε̃ν1 is in MorDb(Mk(A ))(Δ•, G•). 
Hence, so is f = ι(g) + h. The proof is complete, because we assumed that either 
H0(F•) = 0 or H0(G•) = 0. �

The following special case of faithfulness property of ι was used in the above proof.

Lemma 3.5. Let X be a quasi-projective scheme, as in (3.2). Let f : F• −→ G• be a 
morphism in Db(Mk

g(A )) such that (a) Hi(F•) = 0 ∀ i ≤ n0−1, (b) Hi(G•) = 0 ∀ i = n0, 
and (c) the image ι(f•) = 0 in Dk

g (M(A )). Then, f• = 0 in Db(Mk
g(A )).

Proof. Without loss of generality, we can assume n0 = 0 and G• = G is a single term 
complex concentrated at degree zero and also F0 = 0 ∀ i ≤ −1. We can write f• = g•t−1

•
where t is a quasi-isomorphism and g• is a chain complex map. By replacing f• by g•, 
we assume f• is a chain complex map. Note, with p : F0 −→ H0(F•), f0 = H0(f•)p. 
Now ι(f•) = 0 implies H0(f•) = 0 : H0(F•) −→ G. So, f0 = 0 and hence f• = 0. The 
proof is complete. �

To complete the proof of Theorem 3.2, we need to prove the faithfulness of ι, as follows. 
In the following, we will use that fact that, in a triangulated category, a morphism f = 0
if and only if its cone splits.

Proposition 3.6. The functor ι is faithful.

Proof. Suppose f• : F• −→ G• be a morphism in Db(Mk
g(A )) such that ι(f•) = 0. 

We need to prove f• = 0. Without loss of any generality, we can assume that f• is 

in Chb(Mk
g(A )). Embed f is an exact triangle T−1Δ•

g
F•

f
G•

h Δ• in 
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Db((Mk
g(A )). The triangle maps to T−1Δ•

g
F•

0 G•
h Δ• in Dk

g (M(A )).
Therefore, there is a split η : F• −→ T−1Δ•, in Dk

g (M(A )), of g. So, gη = 1F•

in Dk
g (M(A )). By (3.4), we can assume that η is in Db(Mk

g(A )). Now, embed gη in 

a triangle: F•
gη

F• Γ• TF• in Db(Mk
g(A )). This triangle maps to 

F• F• Γ• TF• in Dk(M(A )). Therefore, Γ• = 0 in Dk(M(A )). 
That means, Γ• is exact. Hence, Γ• = 0 in Db(Mk

g(A )). So, gη is an isomorphism in 
Db(Mk(A )). Therefore g(η(gη)−1) = 1 and hence η(gη)−1 is a split of g in Db(Mk

g(A )). 
Therefore, f = 0 in Db(Mk

g(A )). The proof is complete. �
Completing the proof of Theorem 3.2. Follows directly from Propositions 3.4, 3.6. �

The following is a corollary to the method of proofs above.

Corollary 3.7. Suppose X is a quasi-projective scheme over a noetherian affine scheme 
Spec(A) and dimX = d. Then, the restrictions of the functors ι, ι′ in the diagram (3)
induce equivalences of categories:

Db
M(A )(Mk

g(A )) Dk
g,M(A )((M(A )) Dk

g,M(A )(A )

where the subscript M(A ) indicate the full subcategories of the respective derived cate-
gories with homologies in M(A ).

4. Some consequences

The main interest in this study would be, for a noetherian scheme X, the category 
Coh(X) of coherent OX -modules and the subcategory V (X) of locally free sheaves, 
which is a resolving subcategory, if all coherent OX -modules are quotient of a locally 
free sheave. To avoid technicalities, we assume, for the rest of the article that X is locally 
Cohen–Macaulay scheme, with dimX = d and coherent OX-modules are quotient of a 
locally free sheave.

4.1. Witt theory

To address the question of Witt theory, duality needs to be considered. For a noethe-
rian scheme X, consider the resolving subcategory A := V (X). The following remarks 
are in order, where the notation A := V (X) is used for the purpose of subsequent 
analogies.

1. The natural duality on Db(A ) induced by Hom(−, OX), will be denoted by ∗.
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2. Then, M(A ) = M0
g(A ) represents the category of all coherent sheaves with finite 

locally free dimension, which does not have a natural duality, nor does Mk
g(A ). The 

equivalence ι0 := (ι′)−1ι : Db(Mk
g(A )) ∼−→ Dk

g (A ) is the resolution functor.
3. One can pull any (translated) duality in Dk

g (A ), forcibly, via ι0. In particular, with 
# := T k∗, on Db(Mk

g(A )) the most natural duality would be F∨
• := ι−1

0 (ι0(F•)#), 
for complexes F• ∈ Db(Mk

g(A )).
4. In fact, for a coherent sheaf F ∈ Mk

g(A ), when considered as a complex, F∨ would 
be given by a complex, whose homologies are given by Exti(F , OX). So, in general, 
Mk

g(A ) is not closed under this induced duality.

Before the statement of Corollary 4.1, the readers are referred to [8,7] for definition of 
the Witt groups, W (Db

M(A )(Md(A ))), W d(Dd
gM(A )(A )), of subcategories of triangulated 

categories with duality. In the light of the above, the first part of the following is a 
tautology.

Corollary 4.1. Suppose X is a quasi-projective scheme over a noetherian affine scheme 
Spec(A), with dimX = d and A = V (X). Then there are isomorphism of Witt groups: 
W (Db(Mk

g(A ))) ∼−→ W k(Dk
g (A )), W (Db

M(A )(Mk
g(A ))) ∼−→ W k(Dk

g,M(A )(A )). Now 

consider the case k = d := dimX. In deed, Md
g(A ) represent the category of coher-

ent sheaves with grade(F) = dimA (F) = d and it is closed under the duality. We have 
the following commutative diagram of isomorphisms of Witt groups.

W ((Md
g(A )) ∼

W (Db
M(A )(Md

g(A ))) ∼

�

W (Db(Md
g(A )))

�

W d(Dd
gM(A )(A )) ∼ W d(Dd

g (A ))

(7)

Proof. Since the first statement is obvious (3.2, 3.7), we prove the latter statement. 
The composition of the two homomorphism in the top line is an isomorphism by the 
theorem of Balmer [1] and the first one (and hence the second) isomorphism follows 
from [7, §A]. The two vertical lines are isomorphism from the first part (3.2, 3.7). Hence 
the homomorphism in the second line is also an isomorphism. The proof is complete. �

The subcategory of objects of Mk
g(A ), closed under the duality ∨ is as follows.

Lemma 4.2. Suppose F ∈ Mk
g(A ). Then, F∨ ∈ Mk

g(A ) ⇐⇒ grade(F) = dimA (F) = k. 
Therefore, {F ∈ Mk

g(A ) : F∨ ∈ Mk(A )} is an exact category with duality F �→
Extk(F , OX). We denote this subcategory by CMFPD(k).

Proof. It is clear grade(F) = dimA (F) = k =⇒ F∨ ∈ Mk(A ). Let F∨ ∈ Mk(A ). By 
downward induction, we will prove that F has a V -resolution of length k. The argument
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will be same, if we assume 0 Ek+1
dk+1

Ek · · · E0 F 0

is a V -resolution of F . The dual sequence 0 E∗
0 · · · E∗

k

d∗
k+1

E∗
k+1 0

is exact at all degrees i = k (strictly speaking, at degree zero). By local checking, one 
can see that co ker(dk+1) ∈ V . Replacing Ek, by co ker(dk+1) ∈ V , we get a resolution of 
length k, of F . The proof is complete. �

Next, we consider Example 4.8, which we put as a proposition.

Proposition 4.3. Suppose X is a Gorenstein scheme, with dimX = d. Consider the 
resolving category A := MCM (X), as in Example 4.8. In the case, the usual filtration 
by codimension of support agrees with that by grade. So, we will drop the subscript g.

1. In this case, M(A ) = Coh(X) and Md(A ) is the subcategory with support in co-di-
mension d (all locally finite length sheaves, provided all closed points have same 
codimension).

2. Also, an injective resolution I• of OX is a dualizing complex in, the bounded derived 
category of quasi-coherent sheaves on X. Further, the duality induced by I• and the 
one via ι0 agrees (quasi-isomorphic).

3. However, with I := I−d, M −→ Hom(M, I) induces the duality on Md(A ).
4. The diagram (7) reduces to the diagram of isomorphisms:

W (Cohd(X))) ∼
W (Db(Cohd(X)))) ∼

W d(Dd
g (MCM (X))).

The first isomorphism is a result of Gille [5].

Remark 4.4. Finally, we comment on Example 4.9. Everything stated above for A =
V (X) remains valid for A = GΩ and the commutative digram (7) remains intact.

4.2. K-theoretic

Given such equivalences of categories, one may consider K-theoretic invariances. We 
refer to [12] definitions and notations on K-theory.

Theorem 4.5. Let X be as in Theorem 3.2 and A be a resolving subcategory of 
Coh(X), and ι, ι′ be as in the diagram (3). Then ι and ι′ induce homotopy equiva-
lences K(Db(Mk(A ))) ∼

K(Dk(M(A ))) K(Dk((A )))∼ of the K-theory spec-
tra. Consequently, Ki(Mk(A )) ∼= Ki(Db(Mk(A ))) ∼= Ki(Db(A )) ∀i ∈ Z are isomor-
phisms of K-groups.

Proof. Follows from [12, 30.2.30]. �
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Remark 4.6. We list two comments on the Gersten Complexes.

1. Following [12], the comments in [11] regarding the existence of Gersten spectral 
sequences, for (negative) K-theory, extends verbatim for quasi-projective schemes, 
as considered in this article. While a routine applications of localization theorems 
would lead to such a spectral sequence, Theorem 3.2 is needed to obtain the desired 
form.

2. Further, following [13], an existence of similar Gersten spectral sequences, for (neg-
ative) Grothendieck–Witt GW -theory, can be established (unpublished).

4.3. Examples of resolving categories

There is a wide range of applications of the equivalence Theorem 3.2, whenever there 
is a resolving subcategory A of the Coh(X), for any quasi-projective scheme. As was 
pointed out in [8], in the affine case, a good amount of literature is available (see [14]), 
regarding examples of such resolving subcategories, which extends routinely to the non-
affine situations. Following is a list of the main examples that are of our special interest.

Example 4.7. Suppose X is a noetherian scheme with dimX = d. The motivating example 
of resolving subcategories of Coh(X) would be V (X).

Example 4.8. Suppose X is a noetherian scheme with dimX = d. The subcategory 
MCM (X), of maximal Cohen–Macaulay sheaves F over X, is a resolving subcategory.

Example 4.9. Suppose X is a noetherian scheme with dimX = d. Corresponding to 
any semidualizing sheaf Ω one can define a resolving subcategory GΩ. A coherent sheaf 
Ω ∈ Coh(X) is called a semidualizing sheaf if (1) the morphism OX

∼−→ Hom(Ω, Ω) is 
an isomorphism, and (2) Exti(Ω, Ω) = 0 ∀ i ≥ 1. Given such a semidualizing sheaf Ω, for 
F ∈ Coh(X), denote F∗ := Hom(F , Ω). Now, let

GΩ = {F ∈ Coh(X) : F ∼−→ F∗∗ is isomorphism,

Exti(F ,Ω) = Exti(F∗,Ω) = 0 ∀ i ≥ 1}

Then, GΩ is a resolving subcategory.
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