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SECTIONS OF PROJECTIVE MODULES
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Introduction

In the appendix of this papet, Nori discusses the question about sections
of real vector bundles over smooth manifolds as follows.

Suppose that v is a smooth real vector bundle of rank n O a smooth
manifold 4. Let s, be 2 global section of V meeting the zero section
of V transversally in the submanifold By C 4 andlet B bead (smooth)
submanifold of A x R that meets A x {0} transversally in B, - Now $g

will induce an isomorphism
[sp): N(4, By) — V1Bo»

from the normal bundle N(4, B,) of B, in A to the restriction of V to
B,
Suppose that
g: N(AxR, B) - p,(V)\B
is an isomorphism that is compatible with 5, 1n the sense that @|Bg =
[5;) - Nori asked: Can we find a global section § of p1(V) that meets the
sero section of p; (V) transversally precisely on B, so that [s} =9 and

s|A x {0} = 557
In the appendix of the paper Nori answers this question affirmatively in

the following two cases:

(a) dimBgn—Z@dimAé_ZnHL

(b) B = B, xR.

Motivated by this discussion, in the appendix of this paper, Nori asks
the following algebraic analogue of this question.

Suppose X = SpecA4 is 2 smooth affine variety of dimension n. Let
P bea projective A-module of rank r,and S: p—-1Ia surjective homo-
morphism of P onto an ideal I of 4. Assume that the zero set of 1,
vin=Y is a smooth affine subvariety of dimension n—1. Also suppose
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(2.1) Theorem. Let R= A]mb 5'
noetherian ring A, and let

polynomial. Suppose that P isa}

dim R/I + 2 and suppose that S

I, = {f(O)lf(x) is in I}. Ais;.
surjective map such that 9(0) =

that Z = V(J) is a smooth closed subvariety of X x A! = Spec(A[1]),
where ¢ is a variable, such that Z intersects X =0 transversally in ¥ x0Q_
Also suppose that ¢: P[t] — J/J > is a surjective map which is com-
patible with S (i.e., ¢l,_o = [S], the isomorphism induced by S from
P/IP to I/I 2). The question of Nori is whether there is a surjective map

w: P[t] — J such that (i) ¥l,_o =S and (ii) W, =97

In this paper, we investigate this question for affine algebras (i.e., when
A is a noetherian commutative ring). We have an affirmative answer in
the following two cases:

(1) rank P > dimY +3 and J contains a monic polynomial (see (2.1)),

(2) J = IA[1] is locally complete intersection of height > 2 and 1/1 2
is free (see (2.3)).

In the first case (Theorem 2.1), we do not require any smoothness hy-
pothesis. But we have to have the finiteness condition that J contains a
monic polynomial. It will be interesting to know if this finiteness condi-
tion could be omitted. In the second case, also, it will be interesting to
know if the condition that 7/7° is free can be omitted.

1. Lemma of Quillen

In this section we write down some variants of Quillen’s [Q] lemma.

(1.1) Lemma. Let A be a commutative ring and R be an A-algebra.
Suppose that [ is an element in A and 0 is a unit in 1+ TR #AT1, where
R[T] is the polynomial ring over R in the variable T . Then there is an
integer k, such that for 8,8 in A, whenever g — & isin f “A, there
isaunit y in 1+ fTRIT] such that y,(T) = 6(g,T)6(g,T)"".

The following is an immediate consequence of (BT

(1.2) Lemma. Let B = A[T] bea polynomial ring over a commutative
ring A andlet N be an A-module and let M = N & A[T]. Suppose that
s and t are two elements in A such that (s,t)=A. Let ¢ be a unit in
1 +End(N)[T]. Then we can find a unit ¥y in (1+sTEnd(N,)[T]) and
aunit y, in (1+tTEnd(N,)[T]) such that ¢ = (w,), o (w,), .

Obviously, proofs of these two lemmas are exactly the same as in the
paper of Quillen [Q].

2. Main results in the affine case

In this section we shall discuss our main results on the question of Nori.
Theorem (2.1) is our result for nonextended ideals.
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(2.1) Theorem. Let R = A[t] be a polynomial ring over a commutative
noetherian ring A, and let I be an ideal of R that contains a monic
polynomial. Suppose that P is a projective A-module with rank P =r >
dim R/I + 2 and suppose that & P — I, is a surjective map, where
Iy = {f(O)|f(x) is in I}. Also suppose that ¢: P ® A[t] — I/I2 is a
surjective map such that ¢{0) = & modulo Ig ;

Then there is a surjective map ¢ P® A[t] — I such that v lifts ¢ and
PR =7

Notations. Throughout this paper, we shall denote P ® A[t] by Pli]
and use similar obvious notations.

To prove (2.1) we need the following lemma.

(2.2) Lemma. In the setup of (2.1) we can find a lift o =1 of ¢

into I such that ¢'(0) =5 .
Proof. Let n: P[t] — I be an lift of ¢ into I. Then we can write

n="mny+mtt- -+ nktk, where 7, %, " > M arc in Hom(P, A4).
We also have n, = & modulo Ié . If follows that % — n, maps into
Ig. So, we can write & — 1, = f,(0)g,(0)4, + - + f,(0)g,(0)4, where
f(1), g;(t) are in [ and 4; is in Hom(P, A) for i =1 to n. Let
A= f,(0)g (DA + - + [,(1)g, (DA, and let ¢ =n+A4. Then ¢'(0) =
Mg+ (& —1np) = and ¢' lifts ¢ . This completes the proof of (2.2)

Proof of Theorem (2.1). Let J =1INA. Since I contains a monic poly-
nomial, dim(4/J) = dim(R/I). Also since rank(P/JP) > dim(A4/J)+2,
by the theorem of Serre, P/JP has a free direct summand of rank two.
Hence P, ~ P'® Al.,. So, we can find an s in J such that &, =
A€ DA, eD Q, for some submodule Q of £, and elements e, , e,
in P_..

Let ¢’ be as in the Lemma (2.2). Since

(I*Hom(P, R),,, = tI},,Hom(P,,, R, )

and since R, e 1sa free direct summand of P[t],,, . changing ¢’ by
¢ +¢" with ¢" in t1* Hom(P, R), we can assume that ¢, (e,) = f 1
a polynomial with leading coefficient, a unitin A4, (we say f, is monic).

Let X be the set of all prime ideals in spec(4,, [{]), containing (J , f})
and not containing tI,_ . Clearly, dim X < rank @, , where

Qo = (A1+5€2 @ 0)[t].

Let ¢, be the restriction of go'lﬂ to Q. On X, (py,10) isa basic
element of Q, ® 4, (] and IZQS generate Qp . Hence, we can find o5
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in ¢} Ls@p such that g = g, + ¢y is a basic element in Oy on X (see
[EE]).

Define y: P, [t] — I, such that ¢ restriction of y to Q, is ¢,
and y(e,) = f,. Note that w(0)=.% and v is a lift of .

Claim that (P, [f]) + JR,, = I' and I,  have the same radical.
To see this let % be a prime ideal in spec(R,, ) containing I' and not
containing /. If ¢ is notin % then % isin X. Hence w{)’(QO) is not
contained in %, which is a contradiction. On the other hand if 7 is in
¥, then 1C (L, 1) = (P(P,,,), ) = (w(P,,[f], 1) C %, which is again
a contradiction. This establishes the claim.

Now it follows that Wi.s: Pltl,; — I, is a surjective map. Because
if image(y,, ;) is contained in a maximal ideal M , then as f, is in
M, J is also contained in M . Hence I is also contained in M . Now
surjectivity follows from the fact that

i 2
1ma86(W1+J) + Il+_}' — Il+.] )

So, after modifying s, we can assume (1) s in J, (2) Pl = R, .e®
R, e, ® Q[1], and (3) there is a surjective map wy Pt — I, such
that w (0) =5 and y, lifts Pien

Now let w,: P[t] — I be the extension of ¥: B ool

Consider the two exact sequences

(w)),

0~k - Pl = st — 05
(Wz)l %

0= K5 = Pyygll] == Ly 1y = 0.

where K| is the kernel of (w,), and K, isthe kernel of ( ¥,),,, - Alsonote
that X, and K, are projective and K, is extended. In fact, since v (e) =
f is monic, by the theorem of Horrocks [H], K, is locally extended and
hence by Quillen’s theorem [Q], K, is extended from A Sehs)

Let “—7 denote modulo 7. Since ¥, =5 =¥, , we have K, ~ K, .
Hence there is an isomorphism ay: “K: — Fz such that the diagram of
e€xact sequence
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is commutative. Now extend ¢, to an isomorphism o: K, = K, . Then
« will induce an isomorphism f: P, +S)[t] =¥ gy H)[z], such that the

diagram

¥,
Ps(1+s)[r] l Is(l+s) 0

0 » K

J» s |

v. 0

0 KZ Ps(l-l-s){t] - Is(1+s)

is commutative. Since @ = oy, it follows that f = Id.

By Quillen’s lemma (1.2), B = (ﬁz)lﬂ(ﬁfl)s where f, is a unit in
(1+ts End(P,_)[7]) and B, isaunitin (1+tEnd(P,)[t]) . Hence (W385) 145
= (Wl ﬁl )5 .

Now we consider the fibre product diagram, as in Figure 1.

Here P’ is the fibre product of P[] and P, [1] via g, and Nys 1y
are given by the properties of fibre product diagrams.

Let 71 =mn,: Plt]— 1. Then, since 1, is an isomorphism and 7, is
surjective, 1 is also surjective.

- Since f,(0) = IdPS and $,(0)=1d P it follows that #(0) is given by

Figure 2 (see next page).

P} —— — — — — > P, [
I \ﬂz\ Bl
|
PP — —m — — — —
| I n, i Ples [ "
l I \
I — — = e
Y | | Ps(1+s) [t] i 148
Ps[t] | B
| 1
. \ -1
BZ __L Ps(1+s 1 —--—b—B Ps(l«ts) (d

P 1t |

\\2 \E
\‘Vz\ v
Is " Is(1+s) -

1 s(1+s)

FIGURE |
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P
.“P1+s
‘(ﬁ) \i
I0 (1 )
0 1l+s
P
& - Ps(1+s)
5\ \
(]o)s (1 )
0" s(1+s)
FiGURE 2

Hence 7(0) =.%. Again si
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3. Appendix: Homotopy of sections of vector bundles
(by Madhav V. Nori, University of Chicago)

Let V be a smooth real vector bundle of rank n on a smooth
manifold 4. If s, is a global section of ¥ meeting the zero section
of V transversally in the submanifold B, C 4, we have an induced iso-
morphism

[s,]: N(4, By) — ViB,,
where N(A, B;) is the normal bundle of By in A.

Now let B be a (smooth) submanifold of A x R that meets A x {0}

transversally in B, and let

¢: N(AxR, B) - p;(V)|B

be an isomorphism, so that ¢|B, = [s,]. There is then the natural ques-
tion:
Is there a global section s of p;(V) that meets the zero section of
p;‘{V) transversally precisely on B, so that [s]= ¢ and 5|4 x {0} = 5,7
Sufficient conditions for an affirmative answer to this question may be
given easily by using obstruction theory, as outlined in Steenrod’s book,

The Topology of Fibre Bundles.
One first obtains a closed tubular neighbourhood W of B that inter-

sects A x {0} in a closed tubular neighbourhood of B, and a section s’
of p{(V)|W that vanishes precisely on B so that

(a) [s'1=9¢,and

(b) the restrictions of 5" and s, to 4 x {0} N W coincide with each

other.
We thus get a section on W U 4 x {0}, which is nonvanishing on WU

A x {0} — Int W, and which we need to extend to a nonvanishing section
on A x R —Int W . By obstruction theory, the vanishing of

H(AxR-TntW, WUAx{0} —IntW; L)

for all i > n and for all local systems L on 4 xR, is sufficient to
ensure such an extension. By excision, these groups coincide with
H(AxR, WUAx{0}; L) and from the long exact sequence of cohomol-
ogy for the triple (4 xR, WU 4 x {0}, A x {0}), these groups coincide
with
B WuAx {0}, Ax{0}; Ly=H ' (W, WnAx{0}; L)
=H (B, By; L).

These groups vanish for all i > n if
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(a) dmB<n-2&dimd<2n-3,orif
(b) B=B,xR.
So, if (a) or (b) holds, the global section s of pf (V) does indeed exist.
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