HOMOTOPY OF SECTIONS OF PROJECTIVE MODULES

SATYA MANDAL

Introduction

In the appendix of this paper, Nori discusses the question about sections of real vector bundles over smooth manifolds as follows.

Suppose that V is a smooth real vector bundle of rank n on a smooth manifold A. Let s_0 be a global section of V meeting the zero section of V transversally in the submanifold $B_0 \subset A$ and let B be a (smooth) submanifold of $A \times \mathbb{R}$ that meets $A \times \{0\}$ transversally in B_0 . Now s_0 will induce an isomorphism

$$[s_0]: N(A, B_0) \to V|B_0,$$

from the normal bundle $N(A, B_0)$ of B_0 in A to the restriction of V to B_0 . Suppose that

$$\varphi: N(A \times \mathbb{R}, B) \to p_1^*(V)|B$$

is an isomorphism that is compatible with s_0 in the sense that $\varphi|B_0=$ $[s_0]$. Nori asked: Can we find a global section s of $p_1^*(V)$ that meets the zero section of $p_1^*(V)$ transversally precisely on B, so that $[s] = \varphi$ and

In the appendix of the paper Nori answers this question affirmatively in $s|A\times\{0\}=s_0?$ the following two cases:

(a) $\dim B \le n-2 \Leftrightarrow \dim A \le 2n-3$,

Motivated by this discussion, in the appendix of this paper, Nori asks (b) $B = B_0 \times \mathbb{R}$. the following algebraic analogue of this question.

Suppose $X = \operatorname{Spec} A$ is a smooth affine variety of dimension n. Let P be a projective A-module of rank r, and $S: P \rightarrow I$ a surjective homomorphism of P onto an ideal I of A. Assume that the zero set of I, V(I) = Y is a smooth affine subvariety of dimension n-r. Also suppose

Received October 28, 1991 and, in revised form, March 25, 1992. Research partially funded by the General Research Fund, University of Kansas.

that Z=V(J) is a smooth closed subvariety of $X\times \mathbb{A}^1=\operatorname{Spec}(A[t])$, where t is a variable, such that Z intersects $X\times 0$ transversally in $Y\times 0$. Also suppose that $\varphi\colon P[t]\to J/J^2$ is a surjective map which is compatible with S (i.e., $\varphi|_{t=0}=[S]$, the isomorphism induced by S from P/IP to I/I^2). The question of Nori is whether there is a surjective map $\psi\colon P[t]\to J$ such that (i) $\psi|_{t=0}=S$ and (ii) $\psi|_{Z}=\varphi$?

In this paper, we investigate this question for affine algebras (i.e., when A is a noetherian commutative ring). We have an affirmative answer in the following two cases:

- (1) rank $P \ge \dim Y + 3$ and J contains a monic polynomial (see (2.1)),
- (2) J = IA[t] is locally complete intersection of height > 2 and I/I^2 is free (see (2.3)).

In the first case (Theorem 2.1), we do not require any smoothness hypothesis. But we have to have the finiteness condition that J contains a monic polynomial. It will be interesting to know if this finiteness condition could be omitted. In the second case, also, it will be interesting to know if the condition that I/I^2 is free can be omitted.

1. Lemma of Quillen

In this section we write down some variants of Quillen's [Q] lemma.

(1.1) Lemma. Let A be a commutative ring and R be an A-algebra. Suppose that f is an element in A and θ is a unit in $1+TR_f[T]$, where R[T] is the polynomial ring over R in the variable T. Then there is an integer k, such that for g_1 , g_2 in A, whenever g_1-g_2 is in f^kA , there is a unit ψ in 1+fTR[T] such that $\psi_f(T)=\theta(g_1T)\theta(g_2T)^{-1}$.

The following is an immediate consequence of (1.1).

(1.2) Lemma. Let B = A[T] be a polynomial ring over a commutative ring A and let N be an A-module and let $M = N \otimes A[T]$. Suppose that s and t are two elements in A such that (s, t) = A. Let φ be a unit in $1 + \operatorname{End}(N)_{st}[T]$. Then we can find a unit ψ_1 in $(1 + sT \operatorname{End}(N_t)[T])$ and a unit ψ_2 in $(1 + tT \operatorname{End}(N_s)[T])$ such that $\varphi = (\psi_1)_s \circ (\psi_2)_t$.

Obviously, proofs of these two lemmas are exactly the same as in the paper of Quillen [Q].

2. Main results in the affine case

In this section we shall discuss our main results on the question of Nori. Theorem (2.1) is our result for nonextended ideals.

(2.1) **Theorem.** Let R = A[t] be noetherian ring A, and let I be polynomial. Suppose that P is a I dim R/I + 2 and suppose that S $I_0 = \{f(0)|f(x) \text{ is in } I\}$. Also surjective map such that $\varphi(0) \equiv S$

Then there is a surjective map φ $\psi(0) = \mathcal{S}$.

Notations. Throughout this p and use similar obvious notations

To prove (2.1) we need the fol (2.2) Lemma. In the setup of into I such that $\varphi'(0) = \mathscr{S}$.

Proof. Let $\eta: P[t] \to I$ be a $\eta = \eta_0 + \eta_1 t + \dots + \eta_k t^k$, where $\eta_0 \equiv \mathscr{S}$ modulo I_0^2 . So, we can write $\mathscr{S} - \eta_0 = f_i(t)$, $g_i(t)$ are in I and λ_i is $\lambda = f_1(t)g_1(t)\lambda_1 + \dots + f_n(t)g_n \eta_0 + (\mathscr{S} - \eta_0) = \mathscr{S}$ and φ' lift

Proof of Theorem (2.1). Let nomial, $\dim(A/J) = \dim(R/I)$ by the theorem of Serre, P/JI Hence $P_{1+J} \approx P' \otimes A_{1+J}^2$. So, $A_{1+s}e_1 \oplus A_{1+s}e_2 \oplus Q$, for some in P_{1+s} .

Let ϕ' be as in the Lemma

 $tI^2 \operatorname{Hom}(P, R)$

and since $R_{1+s}e_1$ is a free di $\phi' + \phi''$ with ϕ'' in tI^2 Hom(a polynomial with leading coe

Let X be the set of all prin and not containing tI_{1+s} . Cl

Q

Let φ_0 be the restriction element of $Q_0^* \oplus A_{1+s}[t]$ and

ariety of $X \times \mathbb{A}^1 = \operatorname{Spec}(A[t])$, ats $X \times 0$ transversally in $Y \times 0$. surjective map which is commorphism induced by S from thether there is a surjective map (ii) $\psi|_Z = \varphi$?

on for affine algebras (i.e., when the have an affirmative answer in

a monic polynomial (see (2.1)), ection of height > 2 and I/I^2

not require any smoothness hysis condition that J contains a know if this finiteness condition, also, it will be interesting to be omitted.

llen

nts of Quillen's [Q] lemma. ring and R be an A-algebra. s a unit in $1+TR_f[T]$, where variable T. Then there is an ever g_1-g_2 is in f^kA , there $g(g_1T)\theta(g_2T)^{-1}$.

ce of (1.1). mial ring over a commutative $M = N \otimes A[T]$. Suppose that , t) = A. Let φ be a unit in in $(1 + sT \operatorname{End}(N_t)[T])$ and $\varphi = (\psi_1)_s \circ (\psi_2)_t$.

e exactly the same as in the

ine case

ults on the question of Nori. deals.

(2.1) **Theorem.** Let R = A[t] be a polynomial ring over a commutative noetherian ring A, and let I be an ideal of R that contains a monic polynomial. Suppose that P is a projective A-module with rank $P = r \ge \dim R/I + 2$ and suppose that $\mathcal{S}: P \to I_0$ is a surjective map, where $I_0 = \{f(0)|f(x) \text{ is in } I\}$. Also suppose that $\varphi: P \otimes A[t] \to I/I^2$ is a surjective map such that $\varphi(0) \equiv \mathcal{S}$ modulo I_0^2 .

Then there is a surjective map $\varphi: P \otimes A[t] \to I$ such that ψ lifts φ and $\psi(0) = \mathscr{S}$.

Notations. Throughout this paper, we shall denote $P \otimes A[t]$ by P[t] and use similar obvious notations.

To prove (2.1) we need the following lemma.

(2.2) **Lemma.** In the setup of (2.1) we can find a lift $\varphi': [t] \to I$ of φ into I such that $\varphi'(0) = \mathscr{S}$.

Proof. Let $\eta\colon P[t]\to I$ be an lift of φ into I. Then we can write $\eta=\eta_0+\eta_1t+\cdots+\eta_kt^k$, where $\eta_0,\eta_1,\cdots,\eta_k$ are in $\operatorname{Hom}(P,A)$. We also have $\eta_0\equiv \mathscr{S}$ modulo I_0^2 . If follows that $\mathscr{S}-\eta_0$ maps into I_0^2 . So, we can write $\mathscr{S}-\eta_0=f_1(0)g_1(0)\lambda_1+\cdots+f_n(0)g_n(0)\lambda_n$ where $f_i(t),g_i(t)$ are in I and λ_i is in $\operatorname{Hom}(P,A)$ for i=1 to n. Let $\lambda=f_1(t)g_1(t)\lambda_1+\cdots+f_n(t)g_n(t)\lambda_n$ and let $\varphi'=\eta+\lambda$. Then $\varphi'(0)=\eta_0+(\mathscr{S}-\eta_0)=\mathscr{S}$ and φ' lifts φ . This completes the proof of (2.2)

Proof of Theorem (2.1). Let $J=I\cap A$. Since I contains a monic polynomial, $\dim(A/J)=\dim(R/I)$. Also since $\operatorname{rank}(P/JP)\geq \dim(A/J)+2$, by the theorem of Serre, P/JP has a free direct summand of rank two. Hence $P_{1+J}\approx P'\otimes A_{1+J}^2$. So, we can find an s in J such that $P_{1+s}=A_{1+s}e_1\oplus A_{1+s}e_2\oplus Q$, for some submodule Q of P_{1+s} and elements e_1 , e_2 in P_{1+s} .

Let ϕ' be as in the Lemma (2.2). Since

$$tI^{2}\operatorname{Hom}(P,R)_{1+s} = tI_{1+s}^{2}\operatorname{Hom}(P_{1+s},R_{1+s})$$

and since $R_{1+s}e_1$ is a free direct summand of $P[t]_{1+s}$, changing ϕ' by $\phi' + \phi''$ with ϕ'' in $tI^2 \operatorname{Hom}(P, R)$, we can assume that $\phi'_{1+s}(e_1) = f_1$ is a polynomial with leading coefficient, a unit in A_{1+s} (we say f_1 is monic).

Let X be the set of all prime ideals in $\operatorname{spec}(A_{1+s}[t])$, containing (J, f_1) and not containing tI_{1+s} . Clearly, $\dim X < \operatorname{rank} Q_0$, where

$$Q_0 = (A_{1+s}e_2 \oplus Q)[t].$$

Let φ_0 be the restriction of φ'_{1+s} to Q_0 . On X, (φ_0, t) is a basic element of $Q_0^* \oplus A_{1+s}[t]$ and $I^2Q_0^*$ generate Q_0^* . Hence, we can find φ'_0

in $tI_{1+s}^2Q_0^*$ such that $\varphi_0''=\varphi_0+\varphi_0'$ is a basic element in Q_0^* on X (see [EE]).

Define $\psi\colon P_{1+s}[t]\to I_{1+s}$ such that φ restriction of ψ to Q_0 is φ_0'' and $\psi(e_1)=f_1$. Note that $\psi(0)=\mathscr{S}$ and ψ is a lift of φ_{1+s} .

Claim that $\psi(P_{1+s}[t]) + JR_{1+s} = I'$ and I_{1+s} have the same radical. To see this let \mathscr{Y} be a prime ideal in $\operatorname{spec}(R_{1+s})$ containing I' and not containing I. If t is not in \mathscr{Y} then \mathscr{Y} is in X. Hence $\varphi_0''(Q_0)$ is not contained in \mathscr{Y} , which is a contradiction. On the other hand if t is in \mathscr{Y} , then $I \subseteq (I_0, t) = (\mathscr{S}(P_{1+s}), t) = (\psi(P_{1+s}[t], t) \subseteq \mathscr{Y})$, which is again a contradiction. This establishes the claim.

Now it follows that $\psi_{1+J}\colon P[t]_{1+J}\to I_{1+J}$ is a surjective map. Because if $\mathrm{image}(\psi_{1+J})$ is contained in a maximal ideal M, then as f_1 is in M, J is also contained in M. Hence I is also contained in M. Now surjectivity follows from the fact that

image
$$(\psi_{1+J}) + I_{1+J}^2 = I_{1+J}$$
.

So, after modifying s, we can assume (1) s in J, (2) $P_{1+s}[t] = R_{1+s}e_1 \oplus R_{1+s}e_2 \oplus Q[t]$, and (3) there is a surjective map $\psi_1 \colon P_{1+s}[t] \to I_{1+s}$ such that $\psi_1(0) = \mathscr{S}$ and ψ_1 lifts φ_{1+s} .

Now let $\psi_2: P_s[t] \to I_s$ be the extension of $\mathcal{S}: P_s \to I_{0s}$. Consider the two exact sequences

$$\begin{split} 0 &\to K_1 \to P_{s(1+s)}[t] \xrightarrow{(\psi_1)_s} I_{s(1+s)} \to 0 \,, \\ 0 &\to K_2 \to P_{s(1+s)}[t] \xrightarrow{(\psi_2)_{1+s}} I_{s(1+s)} \to 0 \,. \end{split}$$

where K_1 is the kernel of $(\psi_1)_s$ and K_2 is the kernel of $(\psi_2)_{1+s}$. Also note that K_1 and K_2 are projective and K_2 is extended. In fact, since $\psi_1(e_1)=f_1$ is monic, by the theorem of Horrocks [H], K_1 is locally extended and hence by Quillen's theorem [Q], K_1 is extended from $A_{s(1+s)}$.

Let "—" denote modulo t. Since $\overline{\psi}_1 = \mathcal{S} = \overline{\psi}_2$, we have $\overline{K}_1 \approx \overline{K}_2$. Hence there is an isomorphism $\alpha_0 \colon \overline{K}_1 \to \overline{K}_2$ such that the diagram of exact sequence

is commutative. Now extend α_0 to a α will induce an isomorphism $\beta: 1$ diagram

$$0 \longrightarrow K_1 \longrightarrow P_{s(1+s)}$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{i}$$

$$0 \longrightarrow K_2 \longrightarrow P_{s(1+s)}$$

is commutative. Since $\overline{\alpha} = \alpha_0$, it for By Quillen's lemma (1.2), $\beta = (1+ts \operatorname{End}(P_{1+s})[t])$ and β_2 is a unit $= (\psi_1 \beta_1)_s$. Now we consider the fibre produ

Here P' is the fibre product of are given by the properties of fibre Let $\eta = \eta_1 \eta_2 \colon P[t] \to I$. Then, surjective, η is also surjective.

Since $\beta_2(0) = \operatorname{Id}_{P_s}$ and $\beta_1(0) = \operatorname{Figure 2}$ (see next page).

 sic element in Q_0^* on X (see

is a surjective map. Because ideal M, then as f_1 is in also contained in M. Now

$$I_{1+I}$$
.

in J, (2) $P_{1+s}[t] = R_{1+s}e_1 \oplus$ nap $\psi_1: P_{1+s}[t] \to I_{1+s}$ such $\mathcal{S}: P_s \to I_{0s}$.

$$(+s) \rightarrow 0$$
,

$$r_{(1+s)} \rightarrow 0$$
.

cernel of $(\psi_2)_{1+s}$. Also note ded. In fact, since $\psi_1(e_1) = K_1$ is locally extended and \mathbb{R} ded from $A_{s(1+s)}$. $= \overline{\psi}_2$, we have $\overline{K}_1 \approx \overline{K}_2$. such that the diagram of

$$\overline{I}_{s(1+s)} \longrightarrow 0$$

$$\parallel$$
 $\overline{I}_{s(1+s)} \longrightarrow 0$

is commutative. Now extend α_0 to an isomorphism $\alpha\colon K_1\stackrel{\sim}{\to} K_2$. Then α will induce an isomorphism $\beta\colon P_{s(1+s)}[t]\to P_{s(1+s)}[t]$, such that the diagram

is commutative. Since $\overline{\alpha} = \alpha_0$, it follows that $\overline{\beta} = \operatorname{Id}$.

By Quillen's lemma (1.2), $\beta = (\beta_2)_{1+s}(\beta_1^{-1})_s$ where β_1 is a unit in $(1+ts\operatorname{End}(P_{1+s})[t])$ and β_2 is a unit in $(1+t\operatorname{End}(P_s)[t])$. Hence $(\psi_2\beta_2)_{1+s} = (\psi_1\beta_1)_s$.

Now we consider the fibre product diagram, as in Figure 1.

Here P' is the fibre product of $P_s[t]$ and $P_{1+s}[t]$ via β^{-1} , and η_1 , η_2 are given by the properties of fibre product diagrams.

Let $\eta = \eta_1 \eta_2 \colon P[t] \to I$. Then, since η_2 is an isomorphism and η_1 is surjective, η is also surjective.

Since $\beta_2(0) = \operatorname{Id}_{P_s}$ and $\beta_1(0) = \operatorname{Id}_{P_{1+s}}$, it follows that $\eta(0)$ is given by Figure 2 (see next page).

FIGURE 1

FIGURE 2

Hence $\eta(0)=\mathcal{S}$. Again since s is in I, $\beta_1\equiv \mathrm{Id}$ modulo I. Hence $\eta\equiv\psi_1$ modulo I. Therefore η is also a lift of φ . This completes the proof of (2.1).

(2.3) **Theorem.** Let R = A[t] be a polynomial ring over an affine algebra A over a field k and let I_0 be a smooth and locally complete intersection ideal of height r > 2, in A with I_0/I_0^2 free. Write $I = I_0R$ and suppose P is a projective A-module of rank $r = height I_0$. Let $\mathcal{S}: P \to I_0$ be a surjective map and let $\varphi: P[t] \to I/I^2$ be a surjective map such that $\varphi(0) \equiv \mathscr{S}$ modulo I_0^2 . Then there is a surjective map $\psi: P[t] \to I$ such that $\psi(0) = \mathscr{S}$ and ψ lifts φ .

Proof. Let $\varphi'\colon P[t]\to I$ be the extension of \mathscr{S} . Let "—" denote modulo I. Then $\beta=(\overline{\varphi}')^{-1}\overline{\varphi}\colon P[t]/IP[t]\to P[t]/IP[t]$ is an isomorphism. But $P[t]/IP[t]\approx (P/I_0P)\otimes R$ since $\varphi(0)\equiv \mathscr{S}$ modulo I^2 and $\varphi'(0)\equiv \mathscr{S}$; it follows that $\beta\equiv \mathrm{Id}$ modulo t. Since $I_0/I_0^2\approx P/I_0P$ is free, by the theorem of Vorst [V, Theorem (3.3)], β is an elementary transformation. Now by [BR], β can be lifted to an isomorphism $\gamma\colon P[t]\to P[t]$. We can also assume that $\gamma(0)=\mathrm{Id}_P$. Now let $\psi=\varphi'\circ\gamma$. Then $\psi\equiv\varphi'\beta\equiv\varphi$ modulo I, i.e., ψ is a lift of φ . Also note that $\psi(0)=\varphi'(0)\gamma(0)=\mathscr{S}$. This completes the proof of (2.3).

3. Appendix: Homotopy ((by Madhav V. Nori,

Let V be a smooth real vector manifold A. If s_0 is a global se of V transversally in the submaniful morphism

 $[s_0]$: N(A,

where $N(A, B_0)$ is the normal but Now let B be a (smooth) subn transversally in B_0 and let

 $\varphi: N(A \times \mathbb{R})$

be an isomorphism, so that $\varphi|B_0$ tion:

Is there a global section s of $p_1^*(V)$ transversally precisely on .

Sufficient conditions for an affi given easily by using obstruction The Topology of Fibre Bundles.

One first obtains a closed tubu sects $A \times \{0\}$ in a closed tubular of $p_1^*(V)|W$ that vanishes precis

(a) $[s'] = \varphi$, and

(b) the restrictions of s' and other.

We thus get a section on $W \cup A \times \{0\}$ — Int W, and which we on $A \times \mathbb{R}$ — Int W. By obstructi

$$H^i(A \times \mathbb{R} - \text{Int } W$$

for all $i \ge n$ and for all local ensure such an extension. I $H^i(A \times \mathbb{R}, W \cup A \times \{0\}; L)$ and ogy for the triple $(A \times \mathbb{R}, W \cup W)$ with

$$H^{i-1}(W \cup A \times \{0\}, A \times \cdots)$$

These groups vanish for all

I, $\beta_1 \equiv \text{Id modulo } I$. Hence lift of φ . This completes the

omial ring over an affine algerth and locally complete inter- I_0^2 free. Write $I = I_0R$ and $r = height I_0$. Let $\mathcal{S}: P \to I_0$ be a surjective map such that ective map $\psi: P[t] \to I$ such

on of \mathscr{S} . Let "—" denote $\to P[t]/IP[t]$ is an isomore $\varphi(0) \equiv \mathscr{S}$ modulo I^2 and lo t. Since $I_0/I_0^2 \approx P/I_0P$ em (3.3)], β is an elemenbe lifted to an isomorphism $1 = \operatorname{Id}_P$. Now let $\psi = \varphi' \circ \gamma$. a lift of φ . Also note that roof of (2.3).

3. Appendix: Homotopy of sections of vector bundles (by Madhav V. Nori, University of Chicago)

Let V be a smooth real vector bundle of rank n on a smooth manifold A. If s_0 is a global section of V meeting the zero section of V transversally in the submanifold $B_0 \subset A$, we have an induced isomorphism

 $[s_0]: N(A, B_0) \to V|B_0,$

where $N(A, B_0)$ is the normal bundle of B_0 in A.

Now let B be a (smooth) submanifold of $A \times \mathbb{R}$ that meets $A \times \{0\}$ transversally in B_0 and let

$$\varphi: N(A \times \mathbb{R}, B) \to p_1^*(V)|B$$

be an isomorphism, so that $\varphi|B_0=[s_0]$. There is then the natural question:

Is there a global section s of $p_1^*(V)$ that meets the zero section of $p_1^*(V)$ transversally precisely on B, so that $[s] = \varphi$ and $s|A \times \{0\} = s_0$?

Sufficient conditions for an affirmative answer to this question may be given easily by using obstruction theory, as outlined in Steenrod's book, The Topology of Fibre Bundles.

One first obtains a closed tubular neighbourhood W of B that intersects $A \times \{0\}$ in a closed tubular neighbourhood of B_0 , and a section s' of $p_1^*(V)|W$ that vanishes precisely on B so that

(a) $[s'] = \varphi$, and

(b) the restrictions of s' and s_0 to $A \times \{0\} \cap W$ coincide with each other.

We thus get a section on $W \cup A \times \{0\}$, which is *nonvanishing* on $W \cup A \times \{0\}$ – Int W, and which we need to extend to a nonvanishing section on $A \times \mathbb{R}$ – Int W. By obstruction theory, the vanishing of

$$\operatorname{H}^i(A\times \mathbb{R}-\operatorname{Int} W\,,\, W\cup A\times \{0\}-\operatorname{Int} W\,;\, L)$$

for all $i \ge n$ and for all local systems L on $A \times \mathbb{R}$, is sufficient to ensure such an extension. By excision, these groups coincide with $H^i(A \times \mathbb{R}, W \cup A \times \{0\}; L)$ and from the long exact sequence of cohomology for the triple $(A \times \mathbb{R}, W \cup A \times \{0\}, A \times \{0\})$, these groups coincide with

$$\begin{split} H^{i-1}(W \cup A \times \{0\}\,,\, A \times \{0\}\,;\, L) &= H^{i-1}(W\,,\, W \cap A \times \{0\}\,;\, L) \\ &= H^{i-1}(B\,,\, B_0\,;\, L)\,. \end{split}$$

These groups vanish for all $i \ge n$ if

- (a) $\dim B \le n-2 \Leftrightarrow \dim A \le 2n-3$, or if
- (b) $B = B_0 \times \mathbb{R}$.

So, if (a) or (b) holds, the global section s of $p_1^*(V)$ does indeed exist.

Acknowledgments

I thank Madhav V. Nori for suggesting the problem to me and for writing the appendix to this paper. I also thank M. P. Murthy for many useful discussions.

References

- [BR] S. M. Bhatwadekar and Amit Roy, Some theorems about projective modules over polynomial rings, J. Algebra 86 (1984), 150-158.
- [EE] D. Eisenbud and E. G. Evans, Generating modules efficiently: Theorems from algebraic K-theory, J. Algebra 27 (1973), 278–305.
- [H] G. Horrocks, Projective modules over an extension of local ring, Proc. London Math. Soc. (3) 14 (1964), 714-718.
- [Q] Daniel Quillen, Projective modules over polynomials rings, Invent. Math. 36 (1976), 167-171.
- [St] Norman Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951.
- [V] Ton Vorst, The general linear group of polynomial rings over regular rings, Comm. Algebra 9 (1981), 499-509.

University of Kansas

E-mail address: mandal@ukanvax.bitnet