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For a commutative ring A and a finitely generated A-module M , we denote

µ(M) := minimal number of generators of M

1 Background and Main Results

We start with the following theorem of Mohan Kumar:

Theorem 1.1. [Mohan Kumar, [Mk]] Suppose A = R[X ] is a

polynomial ring over a noetherian commutative ring R. Suppose

I is an ideal in A that contains a monic polynomial.

Assume, µ

(
I

I2

)
≥ dim

(
A

I

)
+2 Then, ∃ a surjective map P � I

where P is a projective A-module with rank(P ) = µ
(
I
I2

)
.

In particular, suppose A = k[X1, . . . , Xn] is a polynomial ring

over a field k and I is an ideal in A.

Assume µ

(
I

I2

)
≥ dim

(
A

I

)
+ 2 Then, µ(I) = µ

(
I

I2

)
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Subsequently, I proved the following:

Theorem 1.2 (Mandal [M9]). Suppose A = R[X ] is a polynomial

ring over a noetherian commutative ring R. Suppose I is an ideal

in A that contains a monic polynomial.

Assume µ

(
I

I2

)
≥ dim(A/I) + 2 Then, µ(I) = µ

(
I

I2

)
In deed, the following has been a companion to Murthy’s orig-

inal Complete Intersection Conjecture ([M, M8]):

Conjecture 1.3. Suppose A = R[X ] is a polynomial ring over a

noetherian commutative ring R. Suppose I is an ideal in A that

contains a monic polynomial. Then,

µ(I) = µ

(
I

I2

)
Recall, Murthy’s Complete Intersection Conjecture ([M, M8]) is

the particular case of the same, when A = k[X1, . . . , Xn] is a

polynomial ring over a field k.
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The following was proved in the recent past:

Theorem 1.4 (Mandal [M5]). Let R be a regular ring containing

an infinite field k, with 1/2 ∈ k. Assume R is essentially smooth

over k or k is perfect. Suppose A = R[X ] is the polynomial ring

and I is an ideal in A that contains a monic polynomial.

Then, µ(I) = µ(I/I2)

In fact, any set of n-generators of I/I2 lifts to a set of generators

of I , when n ≥ 2.

In particular, Murthy’s conjecture is settled, in most cases, as

follows.

Corollary 1.5 (Mandal). Suppose A = k[X1, X2, . . . , Xn] is a

polynomial ring over an infinite field k, with 1/2 ∈ k. Suppose I
is an ideal in A.

Then, µ(I) = µ

(
I

I2

)
Remark: When k is infinite perfect, Fasel proved this result with

significant contributions from me.
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The weaker version of S. Abhyankar’s epi-morphism conjecture

[DG] follows from (1.4), as follows. This is significant, because

as is indicated in [DG], very limited progress has been made on

either version of Abhyankar’s epi-morphism conjectures.

Theorem 1.6 (Mandal). Let R be a regular ring over an infinite

field k, with 1/2 ∈ k. Assume R is essentially smooth over k or

k is perfect. Suppose

ϕ : R[X1, X2, . . . Xn] � R[Y1, Y2, . . . Ym] is an epimorphism

of polynomial R-algebras and I = ker(ϕ). If n−m ≥ dimR+ 1,

Then, µ(I) = µ

(
I

I2

)
In particular, if R is local, then I is a complete intersection ideal.

The weaker version of S. Abhyankar’s epi-morphism conjecture

[DG] is settled affirmatively, for infinite fields k, with 1/2 ∈ k, as
follows.

Corollary 1.7 (Mandal). Suppose k is an infinite field, with

1/2 ∈ k. Suppose

ϕ : k[X1, X2, . . . Xn] � k[Y1, Y2, . . . Ym] is an epimorphism

of polynomial k-algebras and I = ker(ϕ).

Then, µ(I) = µ

(
I

I2

)
= n−m
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2 Homotopy and Monic

We start with Nori’s Homotopy conjecture:

Conjecture 2.1 (M. V. Nori). SupposeX = Spec (A) is a smooth

affine scheme over a field k and P is a projective A-module of rank

r. Suppose f0 : P � I0 is a surjective homomorphism, where

I0 is an ideal of A. Now suppose, I ⊆ A[T ] is an ideal in the

polynomial ring A[T ] such that I(0) = I0 and ϕ : P ⊗A[T ] � I
I2

is a surjective map, such that ϕ is compatible with f0. Then,

there is a surjective homomorphism ψ : P ⊗ A[T ] � I such that

ψ|T=0 = f0 and ψ lifts ϕ.

Homotopy is an age old concept, and we give the following

definitions:

Definition 2.2. Suppose A is a commutative noetherian ring and

P is a projective A-module and I is an ideal of A. A surjective

homomorphism f : P
IP � I

I2
would be called a P -local orientation.

Let f0, f1 :
P

IiP
�

Ii
I2i

be two P− local orientations.

We say that f0 is (strictly) homotopic to f1, if there is a P [T ]-local

orientation

F :
P [T ]

IP [T ]
�

I

I2
3 F (0) = f0 and F (1) = f1

Consider the equivalence relation generated by strict homotopy.

We say, f0 is homotopic to f1, if they are equivalent to each other.
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A relaxed version of Nori’s Homotopy conjecture 2.1 is the fol-

lowing:

Conjecture 2.3. Use the notations as in (2.3).

Suppose f0, f1 :
P

IiP
�

Ii
I2i

two P local orientations.

Assume f0 is (strictly) homotopic to f1.

Suppose ∃ surjective map ϕ0 3
P

ϕ0 // //

����

I0

����
P
I0P f0

// // I0
I20

commutes.

Then, same is true about f1.

Remark. We are asking whether such lifting property respects

homotopy. If P = An is free in (2.3), we are talking about the

property of lifting of generators of Ii
I2i

to generators of Ii. When

I arrived in Grenoble to visit the author of [F], in May 2015, he

invited me to work with him to prove this case when P is free

(2.3). I immediately told him that this is only a version of Nori’s

Homotopy conjecture, which he was not properly conversant with.

The following were some of my immediate feedback:

1. Unless A is regular (i. e. unless Bass-Quillen works), existing

methods would not apply. So, we focused on such regular

rings.
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2. Now suppose a noetherian commutative ring and I ⊆ A[T ] is

an ideal and

I = (f1(T ), f2(T ), . . . , fn(T )) + I2.

Then

∃S(T ) ∈ I 3
n∑
i=1

fi(T )gi(T ) + S(T )(S(T )− 1) = 0

In the context of variations of Nori’s conjecture, the stumbling

block had been that we could not pick S(T ) = s ∈ A, which
I told him.

3. Then, because of my faith in the invisibility of monic poly-

nomials, it did not take too long for me to figure out the

following proposition.

Proposition 2.4. Suppose R = A[X ] is a polynomial ring

over a commutative ring A and I is an ideal that contains

a monic polynomial. Suppose ω : Rn � I/I2 is a surjec-

tive homomorphism (local orientation). Then, ω is (strictly)

homotopic to An � A
A given by (1, 0, . . . , 0).

Proof. Postpone!
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3 The Obstruction presheaf

There are skeptics and enthusiasts regarding A1-homotopy the-

ory. Lately, I probed into it. However, I am convinced that there

is a new way to look at things, while I m not competent to say

if it really cracks anything. I understood that they try to look

at everything as functors or presheafs, which has some advan-

tages. That is why we would restructure the above definition of

homotopy. First, we establish some notations that will be useful

throughout this article.

Notations 3.1. Throughout, k will denote a field (or ring), with

1/2 ∈ k and A,R will denote commutative noetherian rings. For

a commutative ring A and a finitely generated A-module M , the

minimal number of generators of M will be denoted by µ(M).
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We denote

q2n+1 =

n∑
i=1

XiYi + Z2, q̃2n+1 =

n∑
i=1

XiYi + Z(Z − 1).

Denote

Q2n = Spec (A2n) where A2n =
k[X1, . . . , Xn, Y1, . . . , Yn, Z]

(q̃2n+1)
(1)

and

Q′2n = Spec (B2n) where B2n =
k[X1, . . . , Xn, Y1, . . . , Yn, Z]

(q2n+1 − 1)
.

(2)

There are inverse isomorphisms

α : A2n
∼−→ B2n β : B2n

∼−→ A2n

given by
α(xi) = xi

2 1 ≤ i ≤ n

α(yi) = yi
2 1 ≤ i ≤ n

α(z) = z+1
2


β(xi) = 2xi 1 ≤ i ≤ n

β(yi) = 2yi 1 ≤ i ≤ n

β(z) = 2z − 1

(3)

Therefore, Q2n
∼= Q′2n.

Definition 3.2. The category of schemes over Spec (k) will be

denoted by Schk. Also, Sets will denote the category of sets.

Given a scheme Y ∈ Schk, the association X 7→ Hom(X, Y )

is a presheaf on Schk. (Recall, a presheaf is a contravariant

functor.)
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This presheaf is often identified with Y , itself. So, in

some literature one may write, Y for the presheaf Hom(−, Y )

and Y (X) := Hom(X, Y ).

10



With such an approach, for X = Spec (A), it follows immedi-

ately that, Q2n(A) and Q′2n(A) can be identified with the sets, as

follows:

Q2n(A) =

{
(f1, . . . , fn; g1, . . . , gn; s) ∈ A2n+1 :

n∑
i=1

figi + s(s− 1) = 0

}

Q′2n(A) =

{
(f1, . . . , fn; g1, . . . , gn; s) ∈ A2n+1 :

n∑
i=1

figi + s2 − 1 = 0

}
The homotopy pre-sheaves are given by the pushout diagrams in

Sets:

Q2n(A[T ]) T=0 //

T=1
��

Q2n(A)

��

Q2n(A) // π0 (Q2n) (A)

and

Q′2n(A[T ]) T=0 //

T=1
��

Q′2n(A)

��

Q′2n(A) // π0 (Q′2n) (A)

The isomorphism Q2n
∼= Q′2n, induces a bijection π0 (Q2n) (A) ∼=

π0 (Q′2n) (A).

For any ring A and

v = (f1, . . . , fn; g1, . . . , gn; s) ∈ Q2n(A), let I(v) := (f1, . . . , fn, s)A

Also, let ωv : An → I(v)
I(v)2

denote the surjective homomorphism

defined by ei 7→ fi + I2 where e1, . . . , en is the standard basis of

An.
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Definition 3.3. Suppose A is a commutative ring and I is an

ideal in A. For an integer n ≥ 1, and a local An-local orientation,

ω : An � I/I2, would be called a local n-orientation of I .

Let O(A, n) =

{
(I, ω) : ω : An �

I

I2
is a local n− orientation

}
For (I, ω) ∈ O(A, n), write

ζ(I, ω) := [(f1, . . . , fn; g1, . . . , gn, s)] ∈ π0 (Q2n(A))

where
∑n

i=1 figi+s(s−1) = 0 for some g1, . . . , gn ∈ A and s ∈ I .
Note,

(f1, . . . , fn; g1, . . . , gn; s) ∈ Q2n(A).

It was established in [F, Theorem 2.0.7], that this association is

well defined. We refer to ζ(I, ω), as an obstruction class. There-

fore, we have a commutative diagram

Q2n(A)
ζ

''
η
����

O(A, n)
ζ
// π0 (Q2n(A))

and η(v) = (I(v), ωv). Note that we use the same notation ζ for

two set theoretic maps.

We comment

1. Note thatQ2n(A) ≡ Hom(A,Q2n) is a presheaf, whileO(n,A)

is not. This why Q2n(A) wins, and we want to work with

it, instead of O(n,A).
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2. We define u,v ∈ Q2n(A) homotopic, if they have same images

in π0 (Q2n) (A).

Define u,v ∈ Q2n(A) to be strictly homotopic, if

∃ F (T ) ∈ Q2n(A[T ]) 3 F (0) = u, F (1) = v

Proposition 3.4. Suppose R = A[X ] is a polynomial ring over a

commutative ring A and I is an ideal that contains a monic poly-

nomial. Suppose ω : Rn � I/I2 is a surjective homomorphism

(local orientation). Then ζ(I, ω) = [0] ∈ π0 (Q2n) (R), where

0 := (0, 0, . . . , 0, 0, . . . , 0) ∈ Q2n(R).

Proof. Let f1, . . . , fn ∈ I be a lift of ω. Then,

I = (f1, f2, . . . , fn) + I2

We can assume that f1 is a monic polynomial, with even degree.

Now, consider the transformation [M9]:

ϕ : A[X,T±1]
∼−→ A[X,T±1] by

{
ϕ(X) = X − T + T−1

ϕ(T ) = T

There is a commutative diagram

A[X ]

��

A[X ]

A[X,T±1] ϕ
//A[X,T±1]

T=1

OO

Then, ϕ(f1) = f1(X − T + T−1) is doubly monic in T , meaning

that its lowest and the highest degree terms have coefficients 1.
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Let F1(X,T ) = T deg f1(X)ϕ(f1) ∈ A[X,T ]. Then, F1(X, 0) = 1.

Also, for i = 2, . . . , n write Fi(X,T ) = T δϕ(fi), for some integer

δ � 0, such that Fi(X,T ) ∈ TA[X,T ]. Therefore, Fi(X, 0) = 0.

Now, write

I ′ = ϕ(IA[X,T±1]) and I := I ′ ∩ A[X,T ].

Since A[X,T ]
I

∼−→ A[X,T±1]
I ′ , it follows

I = (F1(X,T ), . . . , Fn(X,T )) + I 2.

Therefore, by Nakayama’s Lemma, there is a S(X,T ) ∈ I , such

that

(1− S(X,T ))I ⊆ (F1(X,T ), F2(X,T ), . . . , Fn(X,T )).

and hence∑
Fi(X,T )Gi(X,T ) + S(X,T )(S(X,T )− 1) = 0

for some G1, . . . , Gn ∈ A[X,T ]. Write ψ(X,T ) =

(F1(X,T ), F2(X,T ), . . . , Fn(X,T );G1(X,T ), . . . , Gn(X,T );S(X,T ))

Then, ψ(X,T ) ∈ Q2n(A[X,T ]) and I|T=1 = I . Further,

ψ(X, 1) = (f1, . . . , fn;G1(X, 1), . . . , Gn(X, 1);S(X, 1))

and

ψ(X, 0) = (1, 0, . . . , 0;G1(X, 0), . . . , Gn(X, 0), S(X, 0)).
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By [F, 2.0.10], ψ(X, 0) ∼ 0 ∈ Q2n(R). Hence, ψ(X, 1) ∼ 0 ∈
Q2n(R). Therefore,

ζ(I, ω) = [ψ(X, 1)] = [0] ∈ π0 (Q2n(R)) .

The proof is complete.

Remark 3.5. In the light of (3.4), our objective would be to prove

if v ∈ Q2n(A) is homotopically trivial, then the corresponding

local n-orientation

ωIv : An �
Iv
I2v

lifts to a surjection

An // //

ωIv �� ��

Iv

����
Iv
I2v
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4 Homotopy and the lifting property

4.1 Elementary Orthogonal group and Lifting

Before we proceed, we define the action ofEO (A, q2n+1) onQ2n(A)

and give another definition, for the convenience of subsequent dis-

cussions.

Definition 4.1. Fix a commutative ringA. As usual, EO (A, q2n+1)

acts on A2n+1, which restricts to an action on Q′2n(A). Using the

correspondences

α : Q2n(A)
∼−→ Q′2n(A), β : Q′2n(A)

∼−→ Q2n(A)

define an action on Q2n(A) as follows:

∀ v ∈ Q2n(A),M ∈ EO (A, q2n+1) define v ∗M := β (α(v)M)

This action is not given by the usual matrix multiplication. Five

different classes of the generators of EO (q2n+1) (A) and their ac-

tions on Q2n(A) are given in [F].
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Definition 4.2. Let A be a commutative ring over k. Let v ∈
Q2n(A). We write v := (a1, . . . , an; b1, . . . , bn; s). For integers,

r ≥ 1 we say that r-lifting property holds for v, if

I(v) = (a1 + µ1s
r, . . . , an + µns

r) for some µi ∈ A.

We say the lifting property holds for v, if

I(v) = (a1 + µ1, . . . , an + µn) for some µi ∈ I(v)2.

Before we allude to the key result in [F, Corollary 3.2.6] (see

(4.4)), we record the following homotopy lifting theorem, due to

this author (unpublished), that was used crucially in the proof.

Theorem 4.3 (Mandal). Let R be a regular ring containing a

field k. Let

H(T ) := (f1(T ), . . . , fn(T ), g1(T ), . . . , gn(T ), s) ∈ Q2n(R[T ]), with

s ∈ R.
Write ai = fi(0), bi = gi(0). Write I(T ) = (f1(T ), . . . , fn(T ), s).

Also assume I(0) = (a1, . . . , an) . Then,

I(T ) = (F1, . . . , Fn) 3 fi − Fi ∈ s2R[T ]

Proof. See [F, Lemma 3.1.2], communicated by myself.
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Theorem 4.4. Suppose A is a regular ring containing a field k,

with 1/2 ∈ k. Let n ≥ 2 be an integer. Let v ∈ Q2n(A) and

M ∈ EO (A, q2n+1). Then, v has 2-lifting property if and only if

v ∗M has the 2-lifting property.

Proof. We outline the proof in [F]. It would be enough to assume

thatM is a generator of EO (A, q2n+1). There would be five cases

to deal with, one for each type of generators of EO (A, q2n+1),

listed in [F, pp 3-4]. Only of them is nontrivial, that is of the

case of generators of the type 4 (in the list [F, pp 3-4]). This

case follows, mainly from Theorem 4.3 (see [F, Lemma 3.1.2]). In

deed, I spotted the gap in the proof of (see [F, Lemma 3.1.2]),

in the first version of [F] and communicated to the author of [F],

what needs to be done to apply Theorem 4.3.

Remark 4.5. Note, there is no mention of Homotopy in Theo-

rem 4.4. We will show that homotopy relations reduces to the

equivalences defined by the action of EO(q2n+1).
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5 Homotopy and the action of EO(q2n+1)

The following is the quadratic analogue of the result of Ton Vorst

[T, pp 507].

Theorem 5.1. Suppose A is a regular ring containing a field k.

Then,

∀ σ(T ) ∈ O(A[T ], q2n+1), σ(0) = 1 =⇒ σ(T ) ∈ EO(A[T ], q2n+1).

Proof. In the case when k is perfect, it follows from the theorem

of Stavrova ([S, Theorem 1.3]) on REDUCTIVE groups. I reduce

it to the perfect field case, using Popescu’s theorem.

I remark that an elementary proof would be possible, without

using Stavrova’s theorem, exactly as the proof of Ton Vorst ([T,

pp 507]). Someone needs to work it out.

Theorem 5.2. Let A be a essentially smooth algebra over an in-

finite field k, with 1/2 ∈ k. Then, for n ≥ 2, the natural map

ϕ :
Q′2n(A)

EO(A, q2n+1)
−→ π0 (Q′2n) (A) is a bijection.

Proof. See my paper. According to an expert on quadratic forms,
this lemma is standard, which I am not surprised, because of the
structure of the proof.
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The following summarizes the final results on homotopy and

lifting of generators (also see [F, Theorem 3.2.7]).

Theorem 5.3 (Mandal). Suppose A is a regular ring containing

an infinite field k, with 1/2 ∈ k. Assume A is essentially smooth

over k or k is perfect. Let n ≥ 2 be an integer. Denote 0 :=

(0, . . . , 0; 0, . . . , 0; 0) ∈ Q2n(A) and let v ∈ Q2n(A). Then, the

following conditions are equivalent:

1. The obstruction ζ (I(v, ωv)) = [0] ∈ π0 (Q2n) (A).

2. v has 2-lifting property.

3. v has the lifting property.

4. v has r-lifting property, ∀ r ≥ 2.

Proof. It is clear, (2) =⇒ (3). To prove (3) =⇒ (1), suppose I(v) = (a1+µ1, . . . , an+µn),
with µi ∈ I(v)2. Write v′ = (a1 + µ1, . . . , an + µn; 0, . . . , 0; 0) ∈ Q2n(A). By [F, 2.0.10], we
have ζ (I(v, ωv)) = ζ (I(v′, ωv′)) = [v0] ∈ π0 (Q2n) . This establishes, (3) =⇒ (1).

Now we prove (1) =⇒ (2). Assume ζ (I(v, ωv)) = [0]. In case A is essentially finite over
k, it follows from Theorem 5.2 that 0 = v∗M , for some M ∈ EO(A, q2n+1) and (2) follows
from Theorem 4.4. However, when A is regular and contains an infinite perfect field, we
have to use Popescu’s theorem. By definition, ζ (I(v, ωv)) = [0] implies that there is a
chain homotopy from v to 0. This data can also be encapsulated in a finitely generated
algebra A′ over k. As in the proof of (5.1) there is a diagram

k

''

// A′ ι //� p

  

B

��
A

of homomorphisms

such that B is smooth over k. The homotopy relations are carried over to B. Therefore,
by replacing A by B, we can assume that A is essentially smooth over k. So, Theorem 5.2
applies and (2) follows as in the previous case.

So, it is established that (1) ⇐⇒ (2) ⇐⇒ (3). It is clear that (4) =⇒ (2). Now
suppose, one of the first three conditions hold. Fix r ≥ 2. Notice I(v) = (a1, . . . , an, s

r)A.
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So, replacement of s by sr leads to the same obstruction class in ∈ π0 (Q2n) (A), which is
= [0] ∈ π0 (Q2n) (A). Since (1) ⇐⇒ (2), it follows I(v) has 2r-lifting property and hence
the r-lifting property. The proof is complete.
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