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For a commutative ring A and a finitely generated A-module M, we denote

p(M) := minimal number of generators of M

1 Background and Main Results

We start with the following theorem of Mohan Kumar:

Theorem 1.1. [Mohan Kumar, [Mk|| Suppose A = R[X] is a
polynomial ring over a noetherian commutative ring K. Suppose

I is an ideal in A that contains a monic polynomial.
I A
Assume, p (ﬁ) > dim (T) +2 Then, da surjective map P — [

where P is a projective A-module with rank(P) = u ([LQ)
In particular, suppose A = k[Xy,...,X,] is a polynomial ring

over a field k and [ is an ideal in A.

I A I
Assume  p (ﬁ) > dim (T) +2 Then, u(l)=p (ﬁ)
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Subsequently, I proved the following:

Theorem 1.2 (Mandal [M9]). Suppose A = R[X] is a polynomial
ring over a noetherian commutative ring R. Suppose [ is an ideal

in A that contains a monic polynomial.

I , I
Assume p (ﬁ) > dim(A/I)+2 Then, up(l)=p (ﬁ)
In deed, the following has been a companion to Murthy’s orig-

inal Complete Intersection Conjecture (|M, M§|):

Conjecture 1.3. Suppose A = R[X] is a polynomial ring over a
noetherian commutative ring R. Suppose [ is an ideal in A that

contains a monic polynomial. Then,

p(l) = p (é)

Recall, Murthy’s Complete Intersection Conjecture (|M, M8]) is
the particular case of the same, when A = k[ Xy,...,X,] is a

polynomial ring over a field k.



The following was proved in the recent past:

Theorem 1.4 (Mandal [M5]). Let R be a regular ring containing
an infinite field k, with 1/2 € k. Assume R is essentially smooth
over k or k is perfect. Suppose A = R[X] is the polynomial ring

and I is an ideal in A that contains a monic polynomial.
Then, (1) = u(I/ 1)

In fact, any set of n-generators of /I lifts to a set of generators

of I, when n > 2.

In particular, Murthy’s conjecture is settled, in most cases, as

follows.

Corollary 1.5 (Mandal). Suppose A = k[ X1, Xs, ..., X,] is a
polynomial ring over an infinite field k, with 1/2 € k. Suppose [

is an ideal in A.
I
Then, wp(l)=p (ﬁ)
Remark: When £ is infinite perfect, Fasel proved this result with

significant contributions from me.



The weaker version of S. Abhyankar’s epi-morphism conjecture
|IDG] follows from (1.4), as follows. This is significant, because
as is indicated in |DG]|, very limited progress has been made on

either version of Abhyankar’s epi-morphism conjectures.

Theorem 1.6 (Mandal). Let R be a regular ring over an infinite
field k, with 1/2 € k. Assume R is essentially smooth over k or
k is perfect. Suppose

v R[X1,Xs,... X, » R[Y1,Ys,...Y,] isan epimorphism

of polynomial R-algebras and I = ker(y). If n —m > dim R + 1,

Then, pu(l) =p (é)

In particular, if R is local, then [ is a complete intersection ideal.

The weaker version of S. Abhyankar’s epi-morphism conjecture
DG is settled affirmatively, for infinite fields k, with 1/2 € k, as

follows.

Corollary 1.7 (Mandal). Suppose k is an infinite field, with
1/2 € k. Suppose

¢ k[X1, Xo, ... X, =& kY1, Y5, ... Y] is an epimorphism

of polynomial k-algebras and I = ker(yp).

I
Then, wu(l)=p (ﬁ) =n—m



2 Homotopy and Monic

We start with Nori’s Homotopy conjecture:

Conjecture 2.1 (M. V. Nori). Suppose X = Spec (A) is a smooth
affine scheme over a field k£ and P is a projective A-module of rank
r. Suppose fy : P — I is a surjective homomorphism, where
Iy is an ideal of A. Now suppose, I C A[T] is an ideal in the
polynomial ring A[T] such that 1(0) = Iy and ¢ : P® A[T] — =
is a surjective map, such that ¢ is compatible with f;. Then,

there is a surjective homomorphism ¢ : P ® A[T] — I such that
Yir—o = fo and ¥ lifts .

Homotopy is an age old concept, and we give the following

definitions:

Definition 2.2. Suppose A is a commutative noetherian ring and

P is a projective A-module and I is an ideal of A. A surjective
2
P I;
—_— _)> —_—
LP I

We say that fj is (strictly) homotopic to fi, if there is a P[T]-local

homomorphism f : % — =5 would be called a P-local orientation.

Let fy, 11 : be two P — local orientations.

orientation

P[T)] I
Fi@——— F(0) = d F(1) =
[P[T] 12 > ( ) fO all ( ) fl
Consider the equivalence relation generated by strict homotopy.

We say, fois homotopic to fi, if they are equivalent to each other.
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A relaxed version of Nori’s Homotopy conjecture 2.1 is the fol-

lowing:

Conjecture 2.3. Use the notations as in (2.3).

Suppose  fo, f1: ]iD e ]% two P local orientations.
Assume fj is (strictly) homotopic to fi.
P2,
Suppose d surjective map @y > l l commutes.
W

Then, same is true about f;.

Remark. We are asking whether such lifting property respects
homotopy. If P = A" is free in (2.3), we are talking about the
property of lifting of generators of II—Z; to generators of I;. When
[ arrived in Grenoble to visit the author of |F|, in May 2015, he
invited me to work with him to prove this case when P is free
(2.3). T immediately told him that this is only a version of Nori’s
Homotopy conjecture, which he was not properly conversant with.

The following were some of my immediate feedback:

1. Unless A is regular (i. e. unless Bass-Quillen works), existing
methods would not apply. So, we focused on such regular

rings.



2. Now suppose a noetherian commutative ring and I C A[T] is

an ideal and

I = (fl(T)7 f2<T)7 Tt fn(T)> + ]2°

3Ty el 3 Y f(T)g(T)+ S(T)(S(T)—1) =0

In the context of variations of Nori’s conjecture, the stumbling
block had been that we could not pick S(7T') = s € A, which
[ told him.

3. Then, because of my faith in the invisibility of monic poly-
nomials, it did not take too long for me to figure out the

following proposition.

Proposition 2.4. Suppose R = A[X] is a polynomial ring
over a commutative ring A and I is an ideal that contains
a monic polynomial. Suppose w : R" —» I/I? is a surjec-
tive homomorphism (local orientation). Then, w is (strictly)

homotopic to A" — % given by (1,0,...,0).

Proof. Postpone!



3 The Obstruction presheaf

There are skeptics and enthusiasts regarding A'-homotopy the-
ory. Lately, I probed into it. However, I am convinced that there
is a new way to look at things, while I m not competent to say
if it really cracks anything. I understood that they try to look
at everything as functors or presheafs, which has some advan-
tages. That is why we would restructure the above definition of
homotopy. First, we establish some notations that will be useful

throughout this article.

Notations 3.1. Throughout, k will denote a field (or ring), with
1/2 € k and A, R will denote commutative noetherian rings. For
a commutative ring A and a finitely generated A-module M, the

minimal number of generators of M will be denoted by u(M).



We denote

Gont1 = ZXz'Yi + 72

1=1

Denote

@2, = Spec (h,) where o,

and

Q5,, = Spec (%Bs,) where By,

Gonr1 =) XiYi+ Z(Z —1).

1=1

There are inverse isomorphisms

&Z%néﬁgn

given by
(oz(:ci):% 1<i<n
§ aly) =9 1<i<n
_ z+1
a(z) =5

\

Therefore, Qo, = Q).

Definition 3.2. The category of schemes over Spec (k) will be

KXy, XY, Y, 7
(dQn—i—l)
KXy X Y Y 7
(QQn+1 — 1) .
ﬁ : %271 % %n

§ Blyi) =2y, 1<i<n

denoted by Sch,. Also, Sets will denote the category of sets.

Given a scheme Y € Schy, the association X — Hom(X,Y)

is a presheaf on Sch,. (Recall, a presheaf is a contravariant

functor.)



This presheaf is often identified with Y, itself. So, in
some literature one may write, Y for the presheaf Hom(—,Y)

and Y (X) := Hom(X,Y).

10



With such an approach, for X = Spec (A), it follows immedi-
ately that, Q2,(A) and @5, (A) can be identified with the sets, as

follows:

Q2n(A) = {(fh---,fn;gh---,gn;S) €A™ Y figi+s(s—1) = O}

1=1

Q3,(A) = {(fn oSG gy s) € AL Zfigi +s2—1= O}
=1

The homotopy pre-sheaves are given by the pushout diagrams in

Sets:

an(f[T]) = Q%L(A) Q’zn(f[T]) = Q’znl(A)
T=1 and  7=1

The isomorphism @9, = @5, , induces a bijection 7 (Qa,) (A) =
o (Q3,) (A).
For any ring A and

v=_ 1, s fu91, s gn;S) € Qan(A), let I(v) :=(f1,..., fn,5)A

Also, let w, : A" — [I((VV))Q

defined by e; — f; + I? where ey, ..., e, is the standard basis of
A",

denote the surjective homomorphism
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Definition 3.3. Suppose A is a commutative ring and I is an
ideal in A. For an integer n > 1, and a local A"-local orientation,

w: A" — I /1%, would be called a local n-orientation of I.

I

Let O(A,n) = {([,w) cw A" = " is a local n — orientation}

For (I,w) € O(A,n), write

C(I,w) = [(fla sy fn; g1y - .., 9n, S)] € Mo (QQH(A))

where > " | figi+s(s—1) =0 for some g1,...,9, € Aand s € I.
Note,

(f17 x -:fmgla <. :gnQS) € QZn(A)

It was established in |[F, Theorem 2.0.7], that this association is
well defined. We refer to ((I,w), as an obstruction class. There-

fore, we have a commutative diagram

QQn(A> ¢
T
O(A, n) —m (Q2a(A))
and n(v) = (I(v),wy). Note that we use the same notation ¢ for
two set theoretic maps.

We comment

1. Note that Q9,(A) = Hom(A, Qs,) is a presheaf, while O(n, A)
is not. This why )5,(A) wins, and we want to work with
it, instead of O(n, A).
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2. We define u, v € QQ2,(A) homotopic, if they have same images

iﬂ 0 (an) (A)
Define u, v € Q2,(A) to be strictly homotopic, if

3 F(T) € Qu(A[T]) > F(0)=u, F(1)=v

Proposition 3.4. Suppose R = A[X] is a polynomial ring over a
commutative ring A and I is an ideal that contains a monic poly-
nomial. Suppose w : R"® — I/I? is a surjective homomorphism
(local orientation). Then ((I,w) = [0] € 7 (Q2,) (R), where
0:=(0,0,...,0,0,...,0) € Qa,(R).

Proof. Let fi,..., f, € I be a lift of w. Then,

I:<f17f27'°'7fn>+[2

We can assume that f; is a monic polynomial, with even degree.

Now, consider the transformation |M9:

o(X)=X—T+T"!

o AX, T — A[X,T*] by {gp(T)T

There is a commutative diagram
ALX] AlX]

| -

ALX, TH)— A[X, T+]

Then, o(f1) = fi(X — T + T~ ') is doubly monic in T, meaning

that its lowest and the highest degree terms have coefficients 1.
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Let Fi(X,T) = T hXy(f) € A[X,T]. Then, F\(X,0) = L.
Also, for i = 2,...,n write F;(X,T) = T°p(f;), for some integer
d > 0, such that Fj(X,T) € TA[X,T]. Therefore, F;(X,0) = 0.

Now, write

I = p(TAX, T*) and & :=.7'NA[X,T).

~ +1
Since AP{;’T} 5 A[X(}T, ], it follows

I = (F(X,T),...,F,(X,T)) + .72

Therefore, by Nakayama’s Lemma, there is a S(X,T) € .#, such
that

(1-S8(X,T)).7 C (F\(X,T),FH(X,T),...,F,(X,T)).

and hence
Y F(X.T)Gi(X,T)+ 5(X, T)(S(X,T) = 1) =0

for some G, ..., G, € A[X,T]. Write (X, T) =
(FU(X,T), B5(X,T),...,F(X,T);G\(X,T),...,Gn(X,T); S(X,T))
Then, (X, T) € Qou(A[X, T]) and S, = I. Further,

DX 1) = (fr,- s [ GUX D), Ga(X 1) 5(X 1))
and

W(X,0) = (1,0,...,0;G1(X,0),...,G.(X,0),5(X,0)).
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By [F, 2.0.10], ¥(X,0) ~ 0 € Q2,(R). Hence, ¥(X,1) ~ 0 €
Q2n(R). Therefore,

(U, w) = [¥(X,1)] = 0] € mo (Qan(R)).
The proof is complete. n

Remark 3.5. In the light of (3.4), our objective would be to prove
if v € Qan(A) is homotopically trivial, then the corresponding

local n-orientation

; A" - =1

wr, + A" — —‘2’ lifts to a surjection Wk\ i
I: Iy

I3
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4 Homotopy and the lifting property
4.1 Elementary Orthogonal group and Lifting

Before we proceed, we define the action of EO (A, qan41) on Q2,(A)
and give another definition, for the convenience of subsequent dis-

cussions.

Definition 4.1. Fix a commutative ring A. Asusual, FO (A, go11)
acts on A2 which restricts to an action on @5, (A). Using the

correspondences

a:Qan(A) — @3,(A), B Q4 (A) — Qa(A)
define an action on @9,(A) as follows:
VveQuA),MeFEO(A, gui1) define v M :=f(a(v)M)

This action is not given by the usual matrix multiplication. Five
different classes of the generators of EO (go,+1) (A) and their ac-

tions on )y, (A) are given in [F|.
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Definition 4.2. Let A be a commutative ring over k. Let v €
Qon(A). We write v := (a1,...,a,;b1,...,by;8). For integers,
r > 1 we say that r-lifting property holds for v, if

I(v) = (a1 + 18", ..., an + pps") for some p; € A.
We say the lifting property holds for v, if
I(v)=(ay + py,...,a, +pm,)  for some p; € I(v)*
Before we allude to the key result in [F, Corollary 3.2.6] (see

(4.4)), we record the following homotopy lifting theorem, due to
this author (unpublished), that was used crucially in the proof.

Theorem 4.3 (Mandal). Let R be a regular ring containing a

field k. Let
H(T) = (fl(T>7 T fn(T>7 gl(T>7 s 7gn(T>7 S) < Q2n<R[T])7 with

s€ R.
Write a; = f;(0),b; = g;(0). Write I(T) = (f1(T),..., fu(T),s).
Also assume I1(0) = (ay,...,a,) . Then,

I(T)=(F,....F,) > [fi—F€sR[T]

Proof. See |[F, Lemma 3.1.2|, communicated by myself. n
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Theorem 4.4. Suppose A is a reqular ring containing a field k,
with 1/2 € k. Let n > 2 be an integer. Let v € Q,(A) and
M € EO (A, qoni1). Then, v has 2-lifting property if and only if
v x M has the 2-lifting property.

Proof. We outline the proof in |F|. It would be enough to assume
that M is a generator of EO (A, go,4+1). There would be five cases
to deal with, one for each type of generators of EO (A, qon11),
listed in |[F, pp 3-4]. Only of them is nontrivial, that is of the
case of generators of the type 4 (in the list |F, pp 3-4|). This
case follows, mainly from Theorem 4.3 (see |F, Lemma 3.1.2]). In
deed, T spotted the gap in the proof of (see |F, Lemma 3.1.2]),
in the first version of |F| and communicated to the author of [F|,

what needs to be done to apply Theorem 4.3. n

Remark 4.5. Note, there is no mention of Homotopy in Theo-
rem 4.4.  We will show that homotopy relations reduces to the

equivalences defined by the action of EO(qans1).
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5 Homotopy and the action of FO(go,41)

The following is the quadratic analogue of the result of Ton Vorst
T, pp 507].

Theorem 5.1. Suppose A is a reqular ring containing a field k.
Then,

Vao(T)e OAT], gani1), 0(0)=1= o(T) € EO(A[T), q2n+1)-

Proof. In the case when k is perfect, it follows from the theorem
of Stavrova (|S, Theorem 1.3]) on REDUCTIVE groups. I reduce
it to the perfect field case, using Popescu’s theorem.

[ remark that an elementary proof would be possible, without
using Stavrova’s theorem, exactly as the proof of Ton Vorst (|T,

pp 507]). Someone needs to work it out.

Theorem 5.2. Let A be a essentially smooth algebra over an in-
finite field k, with 1/2 € k. Then, for n > 2, the natural map

" Qon(A)
. EO(A7 QQn—i—l)

> 0 (Q5,) (A) is a bijection.

Proof. See my paper. According to an expert on quadratic forms,
this lemma is standard, which I am not surprised, because of the
structure of the proof. n
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The following summarizes the final results on homotopy and

lifting of generators (also see |F, Theorem 3.2.7|).

Theorem 5.3 (Mandal). Suppose A is a regular ring containing
an infinite field k, with 1/2 € k. Assume A is essentially smooth

over k or k is perfect. Let n > 2 be an integer. Denote 0 :=
(0,...,0;0,...,0;0) € Q2,(A) and let v € @Q2,(A). Then, the

following conditions are equivalent:

1. The obstruction ¢ (I(v,wy)) = [0] € m (Q2,) (A).
2. v has 2-lifting property.
3. v has the lifting property.

4. v has r-lifting property, V r > 2.

Proof. It is clear, (2) = (3). To prove (3) = (1), suppose I(v) = (a1 + pi1, ..., an+ fin),
with p; € I(v)?. Write v/ = (ay + 1, -+, @p + 15 0,...,0;0) € Q2,(A). By |F, 2.0.10], we
have ¢ (I(v,wy)) = ¢ (I(V',wy)) = [vo] € T (Q2r) . This establishes, (3) = (1).

Now we prove (1) = (2). Assume ¢ (I(v,wy)) = [0]. In case A is essentially finite over
k, it follows from Theorem 5.2 that 0 = v M, for some M € FO(A, q2,+1) and (2) follows
from Theorem 4.4. However, when A is regular and contains an infinite perfect field, we
have to use Popescu’s theorem. By definition, ¢ (I(v,wy)) = [0] implies that there is a
chain homotopy from v to 0. This data can also be encapsulated in a finitely generated
algebra A’ over k. As in the proof of (5.1) there is a diagram

k—sA'—-B

\\ l of homomorphisms

A

such that B is smooth over k. The homotopy relations are carried over to B. Therefore,
by replacing A by B, we can assume that A is essentially smooth over k. So, Theorem 5.2
applies and (2) follows as in the previous case.

So, it is established that (1) <= (2) <= (3). It is clear that (4) = (2). Now
suppose, one of the first three conditions hold. Fix r > 2. Notice I(v) = (ay, ..., a,, s")A.
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So, replacement of s by s” leads to the same obstruction class in € my (Q2,) (A), which is
= [0] € 7y (Q2n) (A). Since (1) <= (2), it follows I(v) has 2r-lifting property and hence
the r-lifting property. The proof is complete. |
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