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Abstract: We discuss results on K-theory and Grothendieck-Witt (GW) of noetherian
quasi-projective schemes X, over affine schemes Spec (A). For integers k > 0, let CM*(X)
denote the category of coherent Ox-modules F, with locally free dimension dimy (x)(F) =
k = grade(F). We prove that there is a (zig-zag) equivalence D* (CM*(X)) — 2% (¥ (X))
of the derived categories. It follows that there is a sequence of zig-zag maps

K (CMF (X)) —K (CM*(X)) — [ [, xo» K (CM*(X,))

of the K-theory spectra that is a homotopy fibration. We also establish similar homo-
topy fibrations of GW-spectra and GIV-bispectra, by application of the same equivalence
theorem.



1 Preliminaries and Notations

First, we set up some notations.

Notations 1.1. For an exact category &, Ch®(&) will denote the category of chain com-
plexes. The bounded derived category of & will be denoted by D*(&).

X will denote a noetherian scheme, with finite dimension d := dim X.

1. For z € X, denote X, := Spec(Ox,). Also, Coh(X) will denote the category of
coherent O x-modules and ¥/ (X) will denote the category of all locally free sheaves
on X. Denote

M(X) 1= M(¥ (X)) = {F € Coh(X) : dimyx)(F) < 00}

2. We consider filtration of Coh(X) and M(X) by grade, as opposed to usual filtration

by co-dimension of the support.

Recall, for F € Coh(X), grade(F) := min{t : Ext'(F,Ox) # 0}. We remark that, if
X is Cohen-Macaulay, then grade(F) = codim (Supp(F))

For integers £ > 0, denote

[ Cohk(X) := Cohk(X) :={F € Coh(X) : grade(F) > k}
M*(X) := M, (&) := {F € M(X) : grade(F) > k}
CMF*(X) :={F € M(X) : grade(F) = k = dimy x)(F)}
Cht (V (X)) == {F. € Ch* (¥ (X)) : Vi H; (F,) € Coh*(X)}
P (V(X)) :={F. € D" (¥ (X)) : Vi H; (F.) € Coh*(X)}
Ch* (M(X)) := {F. € Ch® (M(X)) : V i H; (F.) € Coh*(X)}
[ 2" (M(X)) == {F. € D" (M(X)) : Vi H; (F.) € Coh*(X)}

Here the filtration M(X) = M°(X) D M!(X) D --- D M%(X) D 0, induce filtrations
on D(¥ (X)), D*(M(X)), Ch*(¥ (X)), Ch*(M ( )), as above. Clearly, when X is
Cohen-Macaulay, this filtration coincides with the filtration by co-dimension of the

support.
For future reference, we remark that (¢h*(¥(X))),2), (¢h* (M(X))),2) are

complicial exact categories with weak equivalences (see [S1| for definition),

where weak equivalences being the set 2 of all quasi-isomorphisms.



Example 1.2. If X = Spec(A) is affine and fi,...,fr € Ais a

regular sequence, then

A
(fis--s 1)
Using simple prime avoidance, the following is an useful way to

construct objects F € CMF(X).

c CM"(A).

Lemma 1.3. Suppose S = ®7°,5;, with Sy = A is a noetherian
graded ring over A, X := Proj(S) and X C X is an open subset

(i. e.X s a quasi projective scheme over A)

Let Y C X be a closed subset of X, with grade (Oy) > k.
Let V(I) = Y be the closure of Y, where I is the homogeneous
ideal of S, defining Y. Then, there is a sequence of homogeneous
elements f1,..., fy € I such that f;,..., fi, induce regular S,-
sequences V p € X, and V1 <43 <ig < -+ <5 < k. Write
Z=V(fi,...,fiynX.

1. F, = 0% € OM*(X). In fact, ®" ,0; @ L£; € OMF*(X) for

any locally free sheaves L; of rank one.

2. Further, if G € Coh*(X), with Y = Supp (G) and Z as above,

there is a surjective map F — G where F = @' |0z ®
O.(n;), for some integers n;. Note that F € OCM*(X).

In other words, any object G € Coh*(X) is image of an object
in CMF(X).



Lemma 1.4. Suppose X is a quasi-projective noetherian scheme
over Spec (A), with dim X = d. Suppose F € M¥(X). Then,

there 1s a resolution

O_>gn_>gn_18”—1 i & F -0 with& € CM*(X).
(1)

2 The Equivalence Theorems

Lemma 1.3 is to prove following equivalence theorem(s).

Theorem 2.1. Let X be a noetherian quasi-projective scheme
over an affine scheme Spec(A) and k& > 0 be a fixed integer.
Consider the inclusion functor CMF(X) < MF¥(X). The induced

functor
¢: D" (CM"(X)) — D" (M"(X)) is an equivalence

of the triangulated categories. Further, consider the inclusion
functor M*(X) — M*(X). Then, the induced functor

B:D" (M"(X)) — D" (M*(X)) is fully faithful
Consequently, so are all three below:

Db (CMk+1<X))

| T

D' (CM*(X)) =—D" (M*(X))
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Similar arguments and otherwise lead to the following.

Theorem 2.2. Let X be a noetherian quasi-projective scheme as
in (2.1) and k > 0 be a fixed integer. Consider the commutative

diagram of functors of derived categories:

DY CMF(X)) - DM (X)) - P4 (M(X)) —£ 2571 (#(X)

o | | I

D' (CM* (X)) —7—D'(MM(X)) —7— Z"(M(X)) —- 2"(7 (X))
(2)

Then, all the horizontal functors are equivalences of derived cat-

egories and all the vertical functors are fully faithful.

3 Implications

For a noetherian scheme X, denote
X% .={Y e X:codim(Y) =4k} and X, :=Spec(Ox,).

We will be using the following, to derive the implication of K-
theory and GIWW-theory, which is well known.

Lemma 3.1. Suppose X is a Cohen-Macaulay quasi-projective
scheme over an affine scheme Spec (A) and k > 0 is an integer.

Then, the sequence of derived categories
P (VX)) — 2" (V(X))— L, extn D" (V(X0))
is exact up to factor. If X is regular, this sequence is exact.
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3.1 K-theory

Our standard reference for K-theory would be the paper of Schlicht-
ing |[S1], where K-Theory spectra was defined for exact categories
& and for complicial exact categories & with weak equivalences.
For such a category, K(&) will denote the (negative) K-theory

spectra of & and K;(&) will denote the K-groups. Likewise, K(&)
would denote the K-theory space of &.

I have a preference to state the non-connective version of K-

Theory, and skip the connective version (K-Theory).



The following is the main application of (2.2) to K-theory.

Theorem 3.2. Suppose X is a noetherian quasi-projective scheme
over an affine scheme Spec (A) and k& > 0 is an integer. We con-

sider complicial exact categories with weak equivalences:

likewise.

{ Cht (V(X)) = (EhF (¥ (X)), 2)
ChF (M(X)) = (¢h" (M(X)),2)

Consider the diagram of K-theory spectra and maps:

K (CMF1 (X)) K (CMF(X)) [exw K (CMF(X,))
l LW l
K (€h" (M(X))) —K (¢h" (M(X))) — I, exw K (€R" (M (X,)))

K (€h (7(X)) —K (Cn" (7(X))) — exw K (€R (7 (X))

Then, the vertical maps are homotopy equivalences of K-theory

spectra.

Further, if X is Cohen-Macaulay, then the second line and the
third line are homotopy fibrations of K-theory spectra. In partic-
ular, the top line is a zig-zag sequence of homotopy fibration of

K-theory spectra, of exact categories:
K (CMF (X)) —K (CMF(X)) — 1, ey K (CM* (X))

Proof. Here the middle upward arrow
d : K(€h* (v (X),2)) — K(€h" (M(X),2)) is induced by



the functor ' : (€h* (¥(X),2)) — (€h* (M(X), 2)) of com-
plicial exact categories with weak equivalences. By (2.2), ¢/ in-
duces an equivalence of the associated triangulated categories.
Therefore, by (|S1, 3.2.29]) ® is a homotopy equivalence. Like-

wise, other two upward arrows are homotopy equivalences.

The middle downward arrow W is a composition of three maps,

as follows:
K (OCMF(X)) —Y~K (Ch* (CM*(X), 2))

vl ¢

K (€h* (M(X), 2)) —K (Ch* (M¥(X), 2))

Now, (’ and ¢/ are induced by the corresponding functors of com-
plicial exact categories, with weak equivalences. Again, by (|S1,
3.2.29|) in conjunction with Theorem 2.2, " and ¢ are homotopy
equivalences. Now, U’ is a homotopy equivalence by the agree-

ment theorem [S1, 3.2.30]. Hence, so is V.

It remains to show that, when X is Cohen-Macaulay, the third
line is a homotopy fibrations of K-theory spectra. To do this,
consider sequence of complicial exact categories with weak equiv-

alences (not necessarily exact):
(CR*H (7 (X)), 2) — (Ch* (V(X)), 2) —Loexm (C1F (V(X2), 2)  (3)

By (3.1), the corresponding sequence of the derived categories
is exact up to factor. Therefore, by an application of the non-

connective version of the Thomason-Waldhausen localization the-
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orem (see |S1, 3.2.27|) the third line in the statement of the the-
orem is a homotopy fibration of K-theory spectra. The proof is

complete. »



It is customary to write down the following K-theory exact

sequence, which is an immediate consequence of (3.2).

Corollary 3.3. Let X and k be as in Theorem 3.2. Assume X

is Cohen-Macaulay. Then, for any integer n, there is an exact

sequence of K-groups,

- ——K, (OM(X)) — K, (CMM(X)) — &, xKn (MF(X,))
K, (CM’“H(X)) - ...

Proof. Follows from Theorem 3.2. The proof is complete. n

Remark 3.4. Let X be as in Theorem 3.2. Assume X is Cohen-
Macaulay. The following are some remarks.
The diagram to compute the Gersten complex, reduces to

@xex(kfl)Knri,l (CMk—1<Xx)) K, _1 (CMk+2(X))

-~
-
-
-~
-
-
-
-~
-~

K, (CM*(X)) B} K,_i (CMF1(X))

®x€X(k) Kn (CMk (Xa:))

~
-
-~
-
-
-~
-
-

K, (CM* (X)) Dpextin K1 (CMF(X,))

The dotted diagonal arrows form the Gersten complex.

The spectral sequence given in [B3| takes the following form:

EV = @ K., (CMP(X,)) = K_,(¥(X)) along pt+q=n.
reX
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4 Grothendieck-Witt theory

To do Grothendieck-Witt theory, one needs to incorporate dual-
ities, to what is said above. We refer back to the diagram 2, in

Theorem 2.2. The categories
M*(X), D"(M*(X)), M(X), 2"(M(X)) have NO natural duality,

while  2%(7(X)) has a duality, induced by Hom (—, Ox).

Lemma 4.1. Let X be a noetherian scheme and k£ > 0. Then,
F — Ext" (F,Ox) is aduality on  OM*(X).

Hence, it induces a duality on the derived category D’ (CM*(X)).
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Proposition 4.2. Let X be a noetherian quasi-projective scheme,
over an affine scheme Spec (A), and k > 0 be an integer. Then,

there 1s a duality preserving equivalence

D' (OM*(X)) — T*Z* (7 (X))
of the triangulated categories, where T denotes the shift, the du-
ality on D’ (CM*(X)) is induced by Ext* (—, Ox) and that on
TF8 (V(X)) is # = T"Hom (—, Ox).

Proof. It is a standard fact that there is a functor M(X) —
D' (¥ (X)), by resolution (e.g. see M1, 3.3]). The restriction to
this functor to CMF(X) extends to a functor D’ (CM*(X)) —
2% (7(X)). It turns out that this functor represents the com-
posite functor in (2.2). Hence the functor is an equivalence. Now,
routine checking establishes that this functor preserves the dual-

ity, as required. The proof is complete. n
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Again, our main reference to Grothedieck Witt theory is the
paper of Schlichting, [S3|, the Grothendieck Witt (GW) theory,
where the theory was developed for dg categories with weak equiv-
alences and duality. Like K-theory, GW-theory is invariant of
equivalences of the associated triangulated categories of the dg-
Category, and when 2 is invertible. While Proposition 4.2 pro-
vided equivalences at the derived category level, there is no func-

tor form dgCM*(X) to dg? (X). Therefore, we need do a little

more work.

Notations 4.3. We establish some notations as follows. Let X

denote a noetherian scheme.

1. In analogy to previous notations, for integers k > 0,

( Perf(X) = Category of Perfect complexes of Oxmodules
D(Perf(X)) = Derived category of Perf(X)
Per fF( ) = {F. € Perf(X) :ViH;(F,) € Coh*(X)}
@kpefr‘f = {F. € D"(Perf(X)):ViH;(F.) € Coh*(X)}

To avoid confusion, we will use prefix dg to denote the re-
spective dg categories. So, dgPer f(X) would denote the dg

category whose objects are same as that of Perf(X).
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2. In fact Perf(X) has a duality. Fix a minimal injective reso-

lution I, of Oy, as follows:

0—Ox—1Ip—1_4 = Clearly, I, € Perf(X).

For F, € Perf(X), denote F" := Hom(F,, I,).

The following addresses the duality aspect of dgPer f(X).

Lemma 4.4. Let X be a noetherian scheme. Let I, be as in

Notation 4.3 (2). Then, the association
Forr F.) endows (dgPerf(X),2)

with a structure of a dg category with weak equivalences and du-

ality, weak equivalences being the set of all quasi-isomorphism 2.

The following proposition on derived equivalences is derived

from results in [TT].

Proposition 4.5. Let X be noetherian separated scheme, with an
ample family of line bundles and k > 0 be an integer. Let I, be
as in Notation 4.3 (2). Then,

P"(V(X)) = D" Perf(X)

is an equivalence of derived categories.
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Of our particular interest would be the following equivalences

of dg categories.
Proposition 4.6. Suppose X is a quasi-projective scheme over

an affine scheme Spec (A) and k& > 0 is an integer. Then,

1. The inclusion functor
dg" ¥ (X) — dgPer f*(X)

is a duality preserving form functor (see [S3, 1.12, 1.7|, for def-
inition), of pointed dg categories with weak equivalences and
dualities, such that the associated functor of the triangulated

categories
T (dg"V (X)) — T (dgPer f*(X))
is an equivalence.
2. The inclusion functor
dgOMF(X) — T* (ngefr’fk(X))

is a duality preserving form functor, of pointed dg categories
with weak equivalences and dualities, where 1" denotes the
shift. Further, the associated functor of the triangulated cat-

egories
T (dgCM" (X)) — 7 (T* (dgPer f*(X)))

is an equivalence.
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The following useful diagram is analogous to the diagram in
the Equivalence Theorem 2.2, in the context of dg categories with

weak equivalences and dualities.

Corollary 4.7. Suppose X is a quasi-projective scheme
over an affine scheme Spec (A), and k > 0,r are inte-

gers. Consider the diagram

T dgCMM Y X)) —T dgPer fA1(X)~—Tkdg" v (X)

| |

TFdgPer f*(X)~——Tkdg" ¥ (X)
(4)

In this diagram, all the arrow are form functors of dg

dgCM*(X)

categories with weak equivalence. Further, the horizon-
tal arrows induce equivalences of the associated trian-
gulated categories and the right hand square commutes.
Note that there is no natural vertical functor on the left
side.

Proof. Follows from Proposition 4.6. .
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Theorem 4.8. Suppose X is a quasi-projective scheme over an
affine scheme Spec (A), with 1/2 € A and k > 0,r are integers.
In the following, weak equivalences and dualities in the respective
categories would be as in (4.6). Then, the maps in the following

2ig-2ag sequences
GWIT (dgOMF (X)) — GWIHT (dgPer fF(X)) 2— W (dghy (X)) in Sp
GWI (dgCM* (X)) — GWEH (dgPer f¥(X)) <c— GWF (dg* (¥ (X)) in BiSp

are stable homotopy equivalences in the respective categories (Sp

and BiSp).

Proof. Follows from Proposition 4.6 and [S3, Theorem 6.5|, [S3,
Theorem 8.9). "
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Main Theorem in GW-Theorey:

Theorem 4.9. Suppose X, k,r are as in (4.8). Assume further
that X 1s a Cohen-Macaulay scheme. Consider the following di-
agram of GW -Bispetra:

GWHT (dgCMF1(X)) GWI (dgCMF(X)) [Lcxw GWI (dgCM* (X))

| | |

GWI (dgPer f*Y(X))  GWI (dgPerf* X)) TT,exo GWI (dgPerf(X,))

| | T

GW I+ (dgh+19/(X)) ——= GW ] (dgb ¥ (X)) —— [ L, xoo GW I (dgh¥ (X))

In this diagram, all the vertical arrows are equivalence of homo-
topy Bispectra and the bottom sequence is a homotopy fibration of
bispectra. In particular, there is a sequence zig-zag maps of Bis-

pectra
GWIIHT (dgOMF+ (X)) —= GWIT (dgCM* (X)) — T [, c xy GWIT (dgCM* (X))

that s a homotopy fibration.

Proof. It follows directly from Theorem 4.8 that the vertical rows
are equivalences. It remains to show that the bottom row is a
fibration. This follows from the localization theorem [S3, Thm
8.10] and Lemma 3.1. When X is regular, use the localization

theorem [S3, Thm 6.6]. The proof is complete. .
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A remark:

Remark 4.10. The following are some remarks:

1. As in Corollary K-theory, each shift r, corresponding to the
fiber sequence in Theorem 4.9, long exact sequence of GW;-

groups would follow.

2. For a scheme X and a rank one locally free sheaf £, Hom(—, L)
induces a duality on #/(X). All of the above would be valid,
with dualities induced by Hom(—, £), instead of Hom(—, Ox).
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4.1 Comparison with the GW-theory of CMF(X)

CMF(X) being an Exact category with duality (and "isomor-
phisms"), it has its own GW (CMF(X)) space and hence the

groups

GW; (CM"(X)) == m (GW (CMF(X))) V i>0

To make better sense out of Theorem 4.9, we compute the groups

GW! (CMH(X)) i= i (G (dgCMM(X))) v i€z

Lemma 4.11. For a noetherian (Cohen-Macaulay) quasi-projective

scheme X, we have
GW," (dgCM* (X)) =

[ o (omt(x)) i>0

) aw (S—iCMk(X)) — GW,(CM*(X)) i < —1

and

GW,? (dgCM* (X)) =

| ew; (oMt (x)) i >0

) ew (S—iCMk(X)—) — GW,(CMF(X)™) i < -1

where "widetilde" indicates idempotent completion. For analogy

with K-theory, see [S1, §2.4.5].
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Thank You!
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