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Abstract: We discuss results on K-theory and Grothendieck-Witt (GW ) of noetherian
quasi-projective schemes X, over affine schemes Spec (A). For integers k ≥ 0, let CMk(X)
denote the category of coherent OX-modules F , with locally free dimension dimV (X)(F) =
k = grade(F). We prove that there is a (zig-zag) equivalence Db

(
CMk(X)

)
→ Dk (V (X))

of the derived categories. It follows that there is a sequence of zig-zag maps

K
(
CMk+1(X)

)
// K
(
CMk(X)

)
//
∐

x∈X(k) K
(
CMk(Xx)

)
of the K-theory spectra that is a homotopy fibration. We also establish similar homo-
topy fibrations of GW-spectra and GW -bispectra, by application of the same equivalence
theorem.
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1 Preliminaries and Notations

First, we set up some notations.

Notations 1.1. For an exact category E , Chb(E ) will denote the category of chain com-
plexes. The bounded derived category of E will be denoted by Db(E ).

X will denote a noetherian scheme, with finite dimension d := dimX.

1. For x ∈ X, denote Xx := Spec (OX,x). Also, Coh(X) will denote the category of
coherent OX-modules and V (X) will denote the category of all locally free sheaves
on X. Denote

M(X) := M(V (X)) = {F ∈ Coh(X) : dimV (X)(F) <∞}

2. We consider filtration of Coh(X) and M(X) by grade, as opposed to usual filtration
by co-dimension of the support.

Recall, for F ∈ Coh(X), grade(F) := min{t : Extt(F ,OX) 6= 0}. We remark that, if
X is Cohen-Macaulay, then grade(F) = co dim (Supp(F))

For integers k ≥ 0, denote

Cohk(X) := Cohkg(X) := {F ∈ Coh(X) : grade(F) ≥ k}
Mk(X) := Mk

g(A ) := {F ∈M(X) : grade(F) ≥ k}
CMk(X) := {F ∈M(X) : grade(F) = k = dimV (X)(F)}
Chk (V (X)) :=

{
F• ∈ Chb (V (X)) : ∀ i Hi (F•) ∈ Cohk(X)

}
Dk (V (X)) :=

{
F• ∈ Db (V (X)) : ∀ i Hi (F•) ∈ Cohk(X)

}
Chk (M(X)) :=

{
F• ∈ Chb (M(X)) : ∀ i Hi (F•) ∈ Cohk(X)

}
Dk (M(X)) :=

{
F• ∈ Db (M(X)) : ∀ i Hi (F•) ∈ Cohk(X)

}
Here the filtration M(X) = M0(X) ⊇ M1(X) ⊇ · · · ⊇ Md(X) ⊇ 0, induce filtrations
on Db(V (X)), Db(M(X)), Chb(V (X)), Chb(M(X)), as above. Clearly, when X is
Cohen-Macaulay, this filtration coincides with the filtration by co-dimension of the
support.

For future reference, we remark that
(
Chk (V (X))) ,Q

)
,
(
Chk (M(X))) ,Q

)
are

complicial exact categories with weak equivalences (see [S1] for definition),
where weak equivalences being the set Q of all quasi-isomorphisms.
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Example 1.2. If X = Spec (A) is affine and f1, . . . , fk ∈ A is a

regular sequence, then

A

(f1, . . . , fn)
∈ CMk(A).

Using simple prime avoidance, the following is an useful way to

construct objects F ∈ CMk(X).

Lemma 1.3. Suppose S = ⊕∞i=0Si, with S0 = A is a noetherian

graded ring over A, X̃ := Proj(S) and X ⊆ X̃ is an open subset

(i. e.X is a quasi projective scheme over A)

Let Y ⊆ X be a closed subset of X , with grade (OY ) ≥ k.

Let V (I) = Y be the closure of Y , where I is the homogeneous

ideal of S, defining Y . Then, there is a sequence of homogeneous

elements f1, . . . , fk ∈ I such that fi1, . . . , fij induce regular S(℘)-

sequences ∀ ℘ ∈ X , and ∀ 1 ≤ i1 < i2 < · · · < ij ≤ k. Write

Z = V (f1, . . . , fk) ∩X .

1. Fn = On
Z ∈ CMk(X). In fact, ⊕ni=1OZ ⊗ Li ∈ CMk(X) for

any locally free sheaves Li of rank one.

2. Further, if G ∈ Cohk(X), with Y = Supp (G) and Z as above,

there is a surjective map F � G where F := ⊕ni=1OZ ⊗
Ox(ni), for some integers ni. Note that F ∈ CMk(X).

In other words, any object G ∈ Cohk(X) is image of an object

in CMk(X).
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Lemma 1.4. Suppose X is a quasi-projective noetherian scheme

over Spec (A), with dimX = d. Suppose F ∈ Mk(X). Then,

there is a resolution

0 // En // En−1
∂n−1 // · · · // E1

// E0
//F // 0 with Ei ∈ CMk(X).

(1)

2 The Equivalence Theorems

Lemma 1.3 is to prove following equivalence theorem(s).

Theorem 2.1. Let X be a noetherian quasi-projective scheme

over an affine scheme Spec (A) and k ≥ 0 be a fixed integer.

Consider the inclusion functor CMk(X) ↪→Mk(X). The induced

functor

ζ : Db
(
CMk(X)

)
−→ Db

(
Mk(X)

)
is an equivalence

of the triangulated categories. Further, consider the inclusion

functor Mk+1(X)→Mk(X). Then, the induced functor

β : Db
(
Mk+1(X)

)
−→ Db

(
Mk(X)

)
is fully faithful

Consequently, so are all three below:

Db
(
CMk+1(X)

)
�� ))

Db
(
CMk(X)

)
ζ
∼ //Db

(
Mk(X)

)
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Similar arguments and otherwise lead to the following.

Theorem 2.2. Let X be a noetherian quasi-projective scheme as

in (2.1) and k ≥ 0 be a fixed integer. Consider the commutative

diagram of functors of derived categories:

Db(CMk+1(X))
ζ
∼ //

α
��

Db(Mk+1(X)) ι
∼ //

β
��

Dk+1(M(X))
γ
��

Dk+1(V (X))
η
��

ι′
∼oo

Db(CMk(X))
ζ
∼ //Db(Mk(X)) ι

∼ //Dk(M(X)) Dk(V (X))
ι′
∼oo

(2)

Then, all the horizontal functors are equivalences of derived cat-

egories and all the vertical functors are fully faithful.

3 Implications

For a noetherian scheme X , denote

X(k) := {Y ∈ X : co dim (Y ) = k} and Xx := Spec (OX,x) .

We will be using the following, to derive the implication of K-

theory and GW -theory, which is well known.

Lemma 3.1. Suppose X is a Cohen-Macaulay quasi-projective

scheme over an affine scheme Spec (A) and k ≥ 0 is an integer.

Then, the sequence of derived categories

Dk+1 (V (X)) //Dk (V (X)) //
∐

x∈X(k)Dk (V (Xx))

is exact up to factor. If X is regular, this sequence is exact.
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3.1 K-theory

Our standard reference forK-theory would be the paper of Schlicht-

ing [S1], where K-Theory spectra was defined for exact categories

E and for complicial exact categories E with weak equivalences.

For such a category, K(E ) will denote the (negative) K-theory

spectra of E and Ki(E ) will denote the K-groups. Likewise, K(E )

would denote the K-theory space of E .

I have a preference to state the non-connective version of K-

Theory, and skip the connective version (K-Theory).
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The following is the main application of (2.2) to K-theory.

Theorem 3.2. SupposeX is a noetherian quasi-projective scheme

over an affine scheme Spec (A) and k ≥ 0 is an integer. We con-

sider complicial exact categories with weak equivalences:{
Chk (V (X)) :=

(
Chk (V (X)) ,Q

)
Chk (M(X)) :=

(
Chk (M(X)) ,Q

) likewise.

Consider the diagram of K-theory spectra and maps:

K
(
CMk+1(X)

)
o
��

K
(
CMk(X)

)
o Ψ
��

∐
x∈X(k) K

(
CMk (Xx)

)
o
��

K
(
Chk+1 (M(X))

)
//K
(
Chk (M(X))

)
//
∐

x∈X(k) K
(
Chk (M (Xx))

)
K
(
Chk+1 (V (X))

)
//

o
OO

K
(
Chk (V (X))

)
//

o Φ

OO ∐
x∈X(k) K

(
Chk (V (Xx))

)o
OO

Then, the vertical maps are homotopy equivalences of K-theory

spectra.

Further, if X is Cohen-Macaulay, then the second line and the

third line are homotopy fibrations of K-theory spectra. In partic-

ular, the top line is a zig-zag sequence of homotopy fibration of

K-theory spectra, of exact categories:

K
(
CMk+1(X)

)
//K
(
CMk(X)

)
//
∐

x∈X(k) K
(
CMk (Xx)

)
Proof. Here the middle upward arrow

Φ : K
(
Chk (V (X),Q)

)
→ K

(
Chk (M(X),Q)

)
is induced by
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the functor ι′ :
(
Chk (V (X),Q)

)
→
(
Chk (M(X),Q)

)
of com-

plicial exact categories with weak equivalences. By (2.2), ι′ in-

duces an equivalence of the associated triangulated categories.

Therefore, by ([S1, 3.2.29]) Φ is a homotopy equivalence. Like-

wise, other two upward arrows are homotopy equivalences.

The middle downward arrow Ψ is a composition of three maps,

as follows:

K
(
CMk(X)

)
Ψ
����

Ψ′ //K
(
Chb

(
CMk(X),Q

))
ζ ′
��

K
(
Chk (M(X),Q)

)
K
(
Chb

(
Mk(X),Q

))
ι′

oo

Now, ζ ′ and ι′ are induced by the corresponding functors of com-

plicial exact categories, with weak equivalences. Again, by ([S1,

3.2.29]) in conjunction with Theorem 2.2, ζ ′ and ι′ are homotopy

equivalences. Now, Ψ′ is a homotopy equivalence by the agree-

ment theorem [S1, 3.2.30]. Hence, so is Ψ.

It remains to show that, when X is Cohen-Macaulay, the third
line is a homotopy fibrations of K-theory spectra. To do this,
consider sequence of complicial exact categories with weak equiv-
alences (not necessarily exact):

(
Chk+1 (V (X)) ,Q

)
//
(
Chk (V (X)) ,Q

)
//
∐

x∈X(k)

(
Chk (V (Xx)) ,Q

)
(3)

By (3.1), the corresponding sequence of the derived categories

is exact up to factor. Therefore, by an application of the non-

connective version of the Thomason-Waldhausen localization the-
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orem (see [S1, 3.2.27]) the third line in the statement of the the-

orem is a homotopy fibration of K-theory spectra. The proof is

complete.
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It is customary to write down the following K-theory exact

sequence, which is an immediate consequence of (3.2).

Corollary 3.3. Let X and k be as in Theorem 3.2. Assume X

is Cohen-Macaulay. Then, for any integer n, there is an exact

sequence of K-groups,

· · · //Kn

(
CMk+1(X)

)
//Kn

(
CMk(X)

)
//⊕x∈X(k)Kn

(
Mk(Xx)

)
//Kn−1

(
CMk+1(X)

)
// · · ·

Proof. Follows from Theorem 3.2. The proof is complete.

Remark 3.4. Let X be as in Theorem 3.2. Assume X is Cohen-

Macaulay. The following are some remarks.

The diagram to compute the Gersten complex, reduces to

⊕x∈X(k−1)Kn+1

(
CMk−1(Xx)

)
�� ++

Kn−1
(
CMk+2(X)

)
��

Kn

(
CMk(X)

)
//

��

⊕x∈X(k)Kn

(
CMk(Xx)

)
//

++

Kn−1
(
CMk+1(X)

)
��

Kn

(
CMk−1(X)

)
⊕x∈X(k+1)Kn−1

(
CMk+1(Xx)

)
The dotted diagonal arrows form the Gersten complex.

The spectral sequence given in [B3] takes the following form:

Ep,q
1 =

⊕
x∈X(p)

K−p−q(CMp(Xx)) =⇒ K−n(V (X)) along p+q = n.
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4 Grothendieck-Witt theory

To do Grothendieck-Witt theory, one needs to incorporate dual-

ities, to what is said above. We refer back to the diagram 2, in

Theorem 2.2. The categories

Mk(X), Db(Mk(X)), M(X), Dk(M(X)) have NO natural duality,

while Dk(V (X)) has a duality, induced by Hom (−,OX) .

Lemma 4.1. Let X be a noetherian scheme and k ≥ 0. Then,

F 7→ Extk (F ,OX) is a duality on CMk(X).

Hence, it induces a duality on the derived categoryDb
(
CMk(X)

)
.
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Proposition 4.2. Let X be a noetherian quasi-projective scheme,

over an affine scheme Spec (A), and k ≥ 0 be an integer. Then,

there is a duality preserving equivalence

Db
(
CMk(X)

)
−→ T kDk ((V (X))

of the triangulated categories, where T denotes the shift, the du-

ality on Db
(
CMk(X)

)
is induced by Extk (−,OX) and that on

T kDk ((V (X)) is # := T kHom (−,OX).

Proof. It is a standard fact that there is a functor M(X) −→
Db (V (X)), by resolution (e.g. see [M1, 3.3]). The restriction to

this functor to CMk(X) extends to a functor Db
(
CMk(X)

)
→

Dk ((V (X)). It turns out that this functor represents the com-

posite functor in (2.2). Hence the functor is an equivalence. Now,

routine checking establishes that this functor preserves the dual-

ity, as required. The proof is complete.
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Again, our main reference to Grothedieck Witt theory is the

paper of Schlichting, [S3], the Grothendieck Witt (GW ) theory,

where the theory was developed for dg categories with weak equiv-

alences and duality. Like K-theory, GW -theory is invariant of

equivalences of the associated triangulated categories of the dg-

Category, and when 2 is invertible. While Proposition 4.2 pro-

vided equivalences at the derived category level, there is no func-

tor form dgCMk(X) to dgV (X). Therefore, we need do a little

more work.

Notations 4.3. We establish some notations as follows. Let X

denote a noetherian scheme.

1. In analogy to previous notations, for integers k ≥ 0,
Perf (X) = Category of Perfect complexes of OXmodules

D(Perf (X)) = Derived category of Perf (X)

Perf k(X) :=
{
F• ∈ Perf (X) : ∀ i Hi (F•) ∈ Cohk(X)

}
DkPerf (X) :=

{
F• ∈ Db(Perf (X)) : ∀ i Hi (F•) ∈ Cohk(X)

}
To avoid confusion, we will use prefix dg to denote the re-

spective dg categories. So, dgPerf (X) would denote the dg

category whose objects are same as that of Perf (X).
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2. In fact Perf (X) has a duality. Fix a minimal injective reso-

lution I• of OX , as follows:

0 //OX // I0
// I−1

// I−2
// · · · . Clearly, I• ∈ Perf (X).

For F• ∈ Perf (X), denote F∨ := Hom(F•, I•).

The following addresses the duality aspect of dgPerf (X).

Lemma 4.4. Let X be a noetherian scheme. Let I• be as in

Notation 4.3 (2). Then, the association

F• 7→ F∨• endows (dgPerf (X),Q)

with a structure of a dg category with weak equivalences and du-

ality, weak equivalences being the set of all quasi-isomorphism Q.

The following proposition on derived equivalences is derived

from results in [TT].

Proposition 4.5. Let X be noetherian separated scheme, with an

ample family of line bundles and k ≥ 0 be an integer. Let I• be

as in Notation 4.3 (2). Then,

Dk(V (X))→ DkPerf (X)

is an equivalence of derived categories.
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Of our particular interest would be the following equivalences

of dg categories.

Proposition 4.6. Suppose X is a quasi-projective scheme over

an affine scheme Spec (A) and k ≥ 0 is an integer. Then,

1. The inclusion functor

dgkV (X) ↪→ dgPerf k(X)

is a duality preserving form functor (see [S3, 1.12, 1.7], for def-

inition), of pointed dg categories with weak equivalences and

dualities, such that the associated functor of the triangulated

categories

T
(
dgkV (X)

)
↪→ T

(
dgPerf k(X)

)
is an equivalence.

2. The inclusion functor

dgCMk(X) ↪→ T k
(
dgPerf k(X)

)
is a duality preserving form functor, of pointed dg categories

with weak equivalences and dualities, where T denotes the

shift. Further, the associated functor of the triangulated cat-

egories

T (dgCMk(X))→ T
(
T k
(
dgPerf k(X)

))
is an equivalence.
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The following useful diagram is analogous to the diagram in

the Equivalence Theorem 2.2, in the context of dg categories with

weak equivalences and dualities.

Corollary 4.7. Suppose X is a quasi-projective scheme
over an affine scheme Spec (A), and k ≥ 0, r are inte-
gers. Consider the diagram

T−1dgCMk+1(X) //T kdgPerf k+1(X)

��

T kdgk+1V (X)oo

��

dgCMk(X) //T kdgPerf k(X) T kdgkV (X)oo

(4)
In this diagram, all the arrow are form functors of dg
categories with weak equivalence. Further, the horizon-
tal arrows induce equivalences of the associated trian-
gulated categories and the right hand square commutes.
Note that there is no natural vertical functor on the left
side.

Proof. Follows from Proposition 4.6.
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Theorem 4.8. Suppose X is a quasi-projective scheme over an
affine scheme Spec (A), with 1/2 ∈ A and k ≥ 0, r are integers.
In the following, weak equivalences and dualities in the respective
categories would be as in (4.6). Then, the maps in the following
zig-zag sequences

GW[r]
(
dgCMk(X)

) ζ //GW[k+r]
(
dgPerfk(X)

)
GW[k+r]

(
dgkV (X)

)Φoo in Sp

GW [r]
(
dgCMk(X)

)
ζ
//GW [k+r]

(
dgPerfk(X)

)
GW [k+r]

(
dgk(V (X)

)
Φ
oo in BiSp

are stable homotopy equivalences in the respective categories (Sp

and BiSp).

Proof. Follows from Proposition 4.6 and [S3, Theorem 6.5], [S3,

Theorem 8.9].
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Main Theorem in GW -Theorey:

Theorem 4.9. Suppose X, k, r are as in (4.8). Assume further
that X is a Cohen-Macaulay scheme. Consider the following di-
agram of GW -Bispetra:

GW [−1+r]
(
dgCMk+1(X)

)
��

GW [r]
(
dgCMk(X)

)
��

∐
x∈X(k) GW [r]

(
dgCMk (Xx)

)
��

GW [k+r]
(
dgPerfk+1(X)

)
GW [k]

(
dgPerfkX)

) ∐
x∈X(k) GW [k+r] (dgPerf(Xx))

GW [k+r]
(
dgk+1V (X)

)
//

OO

GW [k+r]
(
dgkV (X)

)
//

OO

∐
x∈X(k) GW [k+r]

(
dgkV (Xx)

)
OO

In this diagram, all the vertical arrows are equivalence of homo-
topy Bispectra and the bottom sequence is a homotopy fibration of
bispectra. In particular, there is a sequence zig-zag maps of Bis-
pectra

GW [−1+r]
(
dgCMk+1(X)

)
//GW [r]

(
dgCMk(X)

)
//
∐

x∈X(k) GW [r]
(
dgCMk (Xx)

)
that is a homotopy fibration.

Proof. It follows directly from Theorem 4.8 that the vertical rows

are equivalences. It remains to show that the bottom row is a

fibration. This follows from the localization theorem [S3, Thm

8.10] and Lemma 3.1. When X is regular, use the localization

theorem [S3, Thm 6.6]. The proof is complete.
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A remark:

Remark 4.10. The following are some remarks:

1. As in Corollary K-theory, each shift r, corresponding to the

fiber sequence in Theorem 4.9, long exact sequence of GWi-

groups would follow.

2. For a schemeX and a rank one locally free sheaf L,Hom(−,L)

induces a duality on V (X). All of the above would be valid,

with dualities induced byHom(−,L), instead ofHom(−,OX).
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4.1 Comparison with the GW -theory of CMk(X)

CMk(X) being an Exact category with duality (and "isomor-

phisms"), it has its own GW
(
CMk(X)

)
space and hence the

groups

GWi

(
CMk(X)

)
:= πi

(
GW

(
CMk(X)

))
∀ i ≥ 0

To make better sense out of Theorem 4.9, we compute the groups

GW [r]
i

(
CMk(X)

)
:= πi

(
GW [r]

(
dgCMk(X)

))
∀ i ∈ Z.

Lemma 4.11. For a noetherian (Cohen-Macaulay) quasi-projective

scheme X , we have

GW [0]
i

(
dgCMk(X)

)
=

=

 GWi

(
CMk(X)

)
i ≥ 0

GW
(

˜S−iCMk(X)
)

=: GWi(CMk(X)) i ≤ −1

and

GW [2]
i

(
dgCMk(X)

)
=

=

 GWi

(
CMk(X)−

)
i ≥ 0

GW
(

˜S−iCMk(X)−
)

=: GWi(CMk(X)−) i ≤ −1

where "widetilde" indicates idempotent completion. For analogy

with K-theory, see [S1, §2.4.3].
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Thank You!
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