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1. Introduction

We begin with the statement of the Riemann–Roch theorem [6], without denominators,
for Chow groups of zero cycles.

Theorem 1.1. [6, p. 297] Suppose X is a nonsingular variety of dimension n. Let FnK0(X)

denote the subgroup of the Grothendieck group K0(X) generated by points in X and
CHn(X) be the Chow group of zero cycles. Let ϕ :FnK0(X) → CHn(X) be defined by
ϕ(x) = cn(x), where cn(x) is the nth Chern class of x and let ψ : CHn(X) → FnK0(X) be
the natural map.

Then ψϕ = (−1)n−1(n − 1)! Id and ϕψ = (−1)n−1(n − 1)! Id.

In this paper, we prove an analogue of this theorem for weak Euler classes. Weak Euler
classes take values in weak Euler class groups.

The definitions of the weak Euler class group and weak Euler classes were achieved by
relaxing the definitions of the Euler class group and Euler classes. The original definitions
of the Euler class group and the Euler classes, for smooth affine algebras over fields, were
given by M.V. Nori. For background literature we refer to [1,2,8,11,12,15].

For noetherian commutative rings A, with dimA = n � 2 and a line bundle L on
Spec(A), the weak Euler class group E0(A,L) has been defined in [2] as the quotient
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group E0(A,L) = G0/H0(L), where G0 is the free abelian group generated by the set of
all primary ideals N of height n such that N/N2 is generated by n elements and H0(L) is
the subgroup of G0 generated by the set of all global L-cycles in G0 (see the section on
preliminaries for details).

Now assume that the field of rationals Q is contained in A. For projective A-modules P

with rank(P ) = n and det(P ) = L the weak Euler class e0(P ) ∈ E0(A,L) of P has been
defined in [2] (see the section on preliminaries for details).

For a noetherian commutative ring A with dimA = n, we define

FnK0(A) = {[A/I ] ∈ K0(A): I is local complete intersection ideal of height n
}
.

In fact, FnK0(A) is a subgroup of K0(A) [10]. It was also established in [10] that,
for a reduced affine algebra A over an algebraically closed field k, FnK0(A) is the sub-
group of K0(A) generated by the smooth maximal ideals of height n. This subgroup was
investigated by Levine [7] and Srinivas [17].

When Q ⊆ A, the weak Euler class induces a group homomorphism

ϕL :FnK0(A) → E0(A,L).

Conversely, there is a natural homomorphism

ψL :E0(A,L) → FnK0(A).

One of our main theorems is the following analogue of the Riemann–Roch theorem.

Theorem 1.2. Let A be a Cohen–Macaulay ring of dimension n � 2. Assume that A con-
tains the field of rationals Q. Then ϕL and ψL are group homomorphisms. Further,

ϕLψL = −(n − 1)! IdE0(A,L)

and

ψLϕL = −(n − 1)! IdFnK0(A) .

It is known [2] that, for any noetherian commutative ring A of dimension n � 2 with
Q ⊆ A and line bundles L on Spec(A), there is a natural isomorphism

ηL :E0(A,A)
∼−→ E0(A,L).

We also prove that ϕL and ϕA behave naturally with respect to ηL. That means ϕL =
ηLϕA. We give examples that such a natural property fails when we extend ϕL to a larger
subgroup F 2K0(A) of K0(A). Similar examples also show that such an extension of ϕL

fails to be a group homomorphism.
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It was observed by S.M. Bhatwadekar that kernel(ψA) is a torsion subgroup of
E0(A,A). This result is a direct consequence of the theorem stated above. Our inves-
tigation on Riemann–Roch type of theorems on weak Euler classes originated out of a
discussion on this result.

Assume that A is smooth over a field k with char(k) = 0 and dim(A) = n � 2. Recall
[3, 2.5] the natural map πA :E0(A,A) → CHn(A) that sends that cycle (J ) ∈ E0(A,A)

of a local complete intersection ideal J of height n to the Chow cycle [J ] ∈ CHn(A). The
map is well defined because the Chow cycle [J ] = 0 when J is a complete intersection
ideal. Following is a well known open question [3,15].

Question 1.1. ([3, Remark 3.13], [15, Question 5.3]) Let A be a smooth affine domain
over an infinite field k and dimA = n � 2. Let CHn(A) be the Chow group of zero cycles
of X = Spec(A) and πA :E0(A,A) → CHn(A) be the natural homomorphism. Is πA an
isomorphism?

Note that πA is surjective. This question has affirmative answers when the field k is
algebraically closed [15, p. 163] and when k = R [3, Theorem 5.5].

It follows from our main theorem that, for a nonsingular affine algebra A over a field
k with char(k) = 0 and dimA = n � 2, the kernel of the natural map πA :E0(A,A) →
CHn(A) is (n − 1)!-torsion. In particular, Q ⊗ E0(A,A) ≈ Q ⊗ CHn(A).

In Section 2, we discuss some of the preliminaries and set up some definitions and
notations. In Section 3, we discuss the natural behavior of ϕA and ϕL with respect to ηL.
In Section 4, we prove our main theorem on Riemann–Roch and the consequences.

All rings we consider in this paper are noetherian and commutative with dimension at
least 2. All modules we consider are finitely generated.

2. Preliminaries

In this section we give definition of the weak Euler class group and the weak Euler
class of projective modules. We also collect some of the results on K-theory and complete
intersections that we use.

2.1. Definition of the weak Euler class groups

Let A be a noetherian commutative ring with dimA = n � 2. Let L be a projective A-
module of rank one. Bhatwadekar and Sridharan [2] defined the weak Euler class group
E0(A,L) and weak Euler classes e0(P ) ∈ E0(A,L) of projective A-modules P , with
rank(P ) = n and det(P ) = L, as follows.

Definition 2.1. Let A be a noetherian commutative ring with dimA = n � 2 and let L be a
rank one projective A-module. Write F = L ⊕ An−1

(1) Let G0 be the free abelian group generated by the set

S = {
N : N is a primary ideal of height n and μ

(
N/N2) = n

}
.

(The minimal number of generators of a module will be denoted by μ.)
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(2) Let J be an ideal of height n and μ(J/J 2) = n. Let J = N1 ∩ N2 ∩ · · · ∩ Nk be an
irredundant primary decomposition of J . Then μ(Ni/N

2
i ) = n and Ni ∈ S for i =

1, . . . , k. Let (J ) denote the element
∑k

i=1 Ni ∈ G0. We say (J ) is the (weak Euler)
L-cycle determined by J .

(3) A cycle (J ) ∈ G0 is said to be a global (weak Euler) L-cycle if F maps onto J .
(4) Let H0(L) be the subgroup of G0 generated by all the global (weak Euler) L-cycles.
(5) Define E0(A,L) = G0/H0(L). This group is called the weak Euler class group (rela-

tive to L). Elements in E0(A,L) will also be called weak Euler L-cycles. We use the
word ‘cycle’ in analogy to cycles in Chow groups.

6) Notation: The image of a cycle (J ) ∈ G0, determined by an ideal J , in E0(A,L) will
be denoted by the same notation (J ). It will be clear from the context, whether we
mean (J ) in G0 or in E0(A,L).

(7) Now assume that the field of rationals Q ⊆ A. Let P be a projective A-module with
rank(P ) = n and det(P ) = L. Let f :P → J be a surjective homomorphism, where
J is an ideal of height n. Define the weak Euler class e0(P ) of P as e0(P ) = (J ) ∈
E0(A,L). In fact [2, p. 207], this association e0(P ) = (J ) is well defined.

We quote the following theorem from [2].

Theorem 2.1. [2, Theorem 6.8] Let A be a noetherian commutative ring of dimension
n � 2 such that the field of rationals Q is contained in A. Then the natural map

ηL :E0(A,A)
∼−→ E0(A,L)

is well defined and is an isomorphism of groups. Indeed, for an ideal J of height n, with
μ(J/J 2) = n, the map ηL sends the cycle (J ) ∈ E0(A,A) to the cycle (J ) ∈ E0(A,L).

We now quote the following lemma from [2] or see [16].

Lemma 2.1. [2, Proposition 6.7] Let A be a noetherian commutative ring and P,Q be two
projective modules of rank n such that P ⊕ A � Q ⊕ A. Then there exists an ideal J of A,
with height(J ) � n, such that J is surjective image of both P and Q.

Proof. Since P ⊕ A � Q ⊕ A, we have an exact sequence

0 → Q
i−→ P ⊕ A

(f,a)−−−→ A → 0.

Let J = f (P ). By a theorem of Eisenbud–Evans [5] or see [9], we may assume that
J has height � n. Let g :P ⊕ A → A be defined as g(p,x) = x. One can easily check
that gi(Q) = f (P ). In other words, Q maps onto J . �

The following is an immediate consequence of the above lemma.

Lemma 2.2. [2] Let A be a noetherian commutative ring of dimension n � 2 with Q ⊆ A

and L be a line bundle on Spec(A). K0(A) will denote the Grothendieck group of finitely
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generated projective A-modules. Suppose P and Q are two projective A-modules of rank n

with det(P ) = L. If [P ] = [Q] ∈ K0(A) then e0(P ) = e0(Q) ∈ E0(A,L).

Proof. We have rank(P ) = rank(Q) = dimA. We have P and Q are stably isomorphic.
Since rankn + 1 projective modules are cancellative, by Bass cancellation theorem, it fol-
lows that P ⊕ A ≈ Q ⊕ A. It also follows that det(P ) = det(Q) = L. Now, by the above
lemma, there is an ideal J of A of height n such that J is surjective image of both P and Q.
Therefore, it is clear from the definition of the weak Euler class of a projective module that
e0(P ) = e0(Q) in E0(A,L). �
2.2. On the Grothendieck group and the Chow group

In this subsection we set up some notations and definitions regarding the Grothendieck
group and the Chow group.

Notation 2.1. Let A be a noetherian commutative ring of dimension n and X = Spec(A).

(1) As usual, K0(A) will denote the Grothendieck group of finitely generated projective
A-modules.

(2) F 1K0(A) will denote the kernel of the rank map ε :K0(A) → Z.
(3) Define

F 2K0(A) = {
x ∈ F 1K0(A): det(x) = A

}
.

(4) Define

FnK0(A) = {[A/I ] ∈ K0(A): I is a local complete intersection ideal of height n
}
.

It was established in [10, Theorem 1.1] that FnK0(A) is a subgroup of K0(A).
(5) When n = 2 the two notations for F 2K0(A) agree with each other. This follows from

the fact that any unimodular row (a, b) of length 2 is first row of a matrix α ∈ SL2(A).
(6) We also write K0(X) = K0(A), F 1K0(X) = F 1K0(A), F 2K0(X) = F 2K0(A).

Lemma 2.2 can be used to see that weak Euler classes define maps on F 2K0(A).

Definition 2.2. Let A be a commutative noetherian ring of dimension n � 2 with Q ⊆ A

and L be a line bundle on Spec(A). Write F = L⊕An−1. Given any x ∈ F 2K0(A) we can
write x = [P ] − [F ] where rank(P ) = n and det(P ) = L.

Define ΦL(x) = e0(P ).
It follows from Lemma 2.2 above that

ΦL :F 2K0(A) → E0(A,L)

is a well defined map.
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We will be more concerned with the restriction map

ϕL :FnK0(A) → E0(A,L)

of ΦL to FnK0(A).
Both the maps ΦL and ϕL will be called the weak Euler class map.

Remark 2.1. In Section 3, we will see that ϕA and ϕL behave naturally, with respect to the
natural isomorphism ηL :E0(A,A)

∼−→ E0(A,L), in the sense that ϕL = ηLϕA. We will
give examples to show that ΦA and ΦL fail to have the same natural property with respect
to ηL. In Section 4, we will also see that ϕL is a group homomorphism, while ΦL is not.

Following are some standard notations regarding Chow groups and Chern classes that
will be useful for our later discussions.

Notation 2.2. Let X be a nonsingular algebraic scheme of dimension n over a field k.

(1) The Chow group of codimension r cycles will be denoted by CHr (X).
(2) CH(X) = ⊕n

r=0 CHr (X) will denote the total Chow ring.
(3) For x ∈ K0(X) the r th Chern class will be denoted by cr(x). Note that cr(x) ∈

CHr (X).
(4) c(x) = 1 + c1(x) + · · · + cn(x) will be called the total Chern class of x.

For general facts about Chow groups and Chern classes we refer to [6].

2.3. On complete intersections and K-theory

In this subsection we recall some of the key ingredients from complete intersections
and K-theory. The first one among these results is the following theorem of Suslin [18] (or
see [9]).

Theorem 2.2. [18] Let A be any commutative ring and (a1, . . . , an−1, an) be a unimodular
element. Then there is an invertible matrix α ∈ GLn(A) such that the first row of α is
(a1, . . . , an−1, a

(n−1)!
n ).

Boratynski [4] (or see [9]) used this theorem of Suslin to prove the following theorem.

Theorem 2.3. [4] Let R be any commutative ring. Let I be an ideal in R and I = (f1, . . . ,

fn−1, fn) + I 2. Write J = (f1, . . . , fn−1) + I (n−1)!. Then J is the image of a projective
R-module P with rank(P ) = n.

This theorem of Boratynski served as a central motivation for some of the developments
in this theory and of some techniques. We introduce the following notation.
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Notation 2.3. Let I be an ideal of a ring A such that I/I 2 is generated by n elements.
Suppose I = (f1, . . . , fn) + I 2. Let

B(I) = B(I,f ) = B(I,f1, . . . , fn) = (f1, . . . , fn−1) + I (n−1)!.

We quote the following from [10].

Theorem 2.4. [10, p. 445] Let A and I be as above. Further, assume that A is Cohen–
Macaulay.

(1) Then I is a local complete intersection ideal of height n if and only if B(I,f ) is.
(2) If I is local complete intersection of height n then

[
A/B(I,f )

] = (n − 1)![A/I ]

in K0(A).

The following version of Boratynski’s theorem, due to Murthy [14], is crucial for our
later discussions.

Theorem 2.5. [14, Theorem 2.2] Let A be a noetherian commutative ring and I ⊂ A

be a local complete intersection ideal of height r . Suppose I = (f1, . . . , fr ) + I 2 and
J = (f1, . . . , fr−1) + I (r−1)!. Assume f1, . . . , fr is a regular sequence. Then there is
a projective A-module P of rank r and a surjective homomorphism P → J , such that
[P ] − [Ar ] = −[A/I ] ∈ K0(A).

We give a proof of Murthy’s theorem to capture some of the technical details that will
be useful in later sections.

Proof. It follows that (1 + s)I ⊆ (f1, . . . , fr) for some s ∈ I . So,
∑r

i=1 figi = s(1 + s).
Let

Ar = Z[X1, . . . ,Xr,Y1, . . . , Yr ,Z]/
(∑

XiYi − Z(1 + Z)
)
.

The images of Xi,Yi,Z in Ar will be denoted by xi, yi, z, respectively. Consider the map

Ar → A

that sends xi, yi , respectively, to fi, gi and z to s.
By Theorem 2.2, there is an invertible matrix β ∈ GLr ((Ar)z(1+z)) whose first row is

(x1, . . . , xr−1, x
(r−1)!
r ). Let α be the image of β in GLr (As(1+s)).
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Now, P be the projective A-module defined by the following fiber product diagram:

P Ar
s

Ar
t Ar

st

α
Ar

st

Here t = 1 + s. Then P maps onto J and [P ] − [Ar ] = −[A/I ].
The main technical point is, since α comes from (Ar)z(1+z), we have [P ] − [Ar ] =

−[A/I ].
Also note that, if r � 2 then the determinant of the projective module P above is trivial.

This follows from the fact (see [19]) that Pic(Ar) = 0. �

3. The natural property

In this section we prove that the maps ϕA :FnK0(A) → E0(A,A) and ϕL :FnK0(A) →
E0(A,L) behave naturally with respect to the natural isomorphism ηL :E0(A,A)

∼−→
E(A,L).

Theorem 3.1. Let A be a commutative noetherian ring of dimension n � 2. Suppose
J is a local complete intersection ideal of height n and J = (f1, f2, . . . , fn) + J 2 where
f1, f2, . . . , fn is a regular sequence. Let I = (f1, f2, . . . , fn−1)+J (n−1)!. Assume that L is
a projective A-module of rank one. We will construct a projective A-module Q of rank n

such that

(1) Q maps onto I .
(2) [Q] − [L ⊕ An−1] = −[A/J ] in K0(A).
(3) ∧nQ = L.

Proof. Since dimA = n = height(J ), we can assume that L is an invertible ideal and
J + L = A. Find t1 = 1 + s1 ∈ 1 + J such that t1J ⊆ (f1, . . . , fn). Also let t2 = 1 + s2 ∈
(1 + J ) ∩ L. Let t = t1t2 = (1 + s1 + s2 + s1s2) = 1 + s where t ∈ L, s ∈ J . We have
tJ ⊆ (f1, . . . , fn). So, It = (f1, . . . , fn−1, f

(n−1)!
n ).

Let

An = Z[X1, . . . , xn,Y1, . . . , Yn,Z]/
(∑

XiYi − Z(1 + Z)
)
.

There is a natural map An → A, as described in the proof of Theorem 2.5. By the theorem
of Suslin (Theorem 2.2) there is a matrix α ∈ Mn(A) ∩ GLn(Ast ) such that

(1) α is the image of a matrix in Mn(An) ∩ GLn((An)z(1+z)),

(2) the first row of α is (f1, . . . , fn−1, f
(n−1)!
n ), and

(3) det(α) = (st)k for some integer k � 0.
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Now consider the following fiber product diagram.

P

g

An
s

g2

I Is

An
t

g1

An
st

α

g1

An
st

g2

It Ist Ist

Here P is the projective A-module obtained by patching An
t and An

s via α. The homo-

morphism g1 is given by (f1, . . . , fn−1, f
(n−1)!
n ) and g2 is given by (1,0, . . . ,0).

Because of the arguments given in the proof of Theorem 2.5, we have [P ] − [An] =
−[A/J ] and ΛnP = A.

Let h :L ⊕ P → A = L + I be the surjective map defined by h(l,p) = l − g(p). Let
Q = kernel(h). Then the following sequence

0 → Q → L ⊕ P
h−→ A → 0

is exact. So, Q ⊕ A ≈ L ⊕ P and also

Q = {
(l,p) ∈ L ⊕ P : l = g(p)

}
.

Let ϕ :Q → L be defined by ϕ(l,p) = l. Then ϕ :Q → LI is a surjective homomor-
phism.

Write F = L ⊕ An−1 and let ψ :F → L be the projection to L.
Let K = An−1 and K ′ = ker(ϕ). Then sequences

0 → K → F
ψ−→ L → 0

and

0 → K ′ → Q
ϕ−→ IL → 0

are exact.
We will see that there is a homomorphism η :Q → F , such that

(1) ηs is an isomorphism,
(2) ϕ = ψη.
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Now, we will split the proof into two parts. In Part-I of the proof, we assume the exis-
tence of a homomorphism η as above and complete the proof of the theorem. In Part-II, we
will prove the existence of the homomorphism η with the above properties.

Part-I: Some of the arguments in this part of the proof are similar to that in [14]. It is
enough to prove that there is a surjective map f :F ⊕ Q → I ⊕ F . To see this, suppose
there is such a surjection f . Let Q′ = f −1(I ). Then Q′ maps onto I and Q′ ⊕F = Q⊕F .
So, [Q′] − [F ] = [Q] − [F ] = [P ] − [An] = −[A/J ]. Also note that det(Q′) = L.

Therefore, we will construct such a surjection f :F ⊕ Q → I ⊕ F .
Let M = ψ−1(LI). Then there is an exact sequence

0 → M → I ⊕ F
γ−→ A → 0,

where the last map γ is defined by γ (x,p) = x − ψ(p) and the first map sends p ∈ M

to (ψ(p),p).
So, we will prove that L ⊕ An−2 ⊕ Q maps onto M . Look at the following diagram of

exact sequences:

0 K ′ Q
ϕ

η

IL 0

0 K M
ψ

IL 0

Note ϕ = ψη. It follows that K/η(K ′) ≈ M/η(Q).
Since ηs is an isomorphism, it follows that Ks = η(K ′)s . So, srK ⊆ η(K ′) for some

integer r > 0.
The map K/(srK) → K/η(K ′) is surjective. Since, t = 1 + s ∈ L, we have L/srL ≈

A/srA. So, K/srK ≈ (L ⊕ An−2)/(sr (L ⊕ An−2)). Therefore there is a surjective map
L ⊕ An−2 → K/η(K ′).

Now K/η(K ′) ≈ M/η(Q). It follows that M is surjective image of Q⊕L⊕An−2. This
completes the proof of Part-I.

Part-II: In this part, we establish that there is a homomorphism Q → F as described
above. We write Q1 = Qt and Q2 = Qs .

First, note that

Q1 = {
(l, x1, . . . , xn) ∈ Lt ⊕ An

t : x1f1 + · · · + xn−1fn−1 + xnf
(n−1)!
n = l

}

and

Q2 = {
(l, y1, . . . , yn) ∈ Ls ⊕ An

s : y1 = l
}
.

Define

η1 :Q1 → Ft
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as follows: We have Ft = An
t . Since α ∈ Mn(A), it defines a map α :An

t → An
t . Let (l, x1,

. . . , xn) ∈ Q1 and write α(x1, . . . , xn)
T = (z1, z2, . . . , zn). We define η1(l, x1, . . . , xn) =

(l, z2, . . . , zn). In fact, η1(l, x1, . . . , xn) = (z1, z2, . . . , zn).
Define

η2 :Q2 → Fs

as η2(l, y1, . . . , yn) = (l, y2, . . . , yn). In fact, η2(l, y1, . . . , yn) = (y1, y2, . . . , yn).
Consider the fiber product diagram:

Q

η

π1

π2
Q2

η2

F Fs

Q1

η1

Q1s

η1

δ
Q2t

η2

Ft Fst
Id

Fst

Here δ is the restriction of IdL ⊕α.
We want to see that η2δ = η1.
Let (l, x1, . . . , xn) ∈ (Q1)s . Let (y1, . . . , yn)

T = α(x1, . . . , xn)
T . Then η1(l, x1,

. . . , xn) = (y1, y2, . . . , yn) = (l, y2, . . . , yn). So, η2δ = η1.
The homomorphism η :Q → F is given by the properties of fiber product diagrams.

Since η2 is an isomorphism, so is ηs .
Note that η(l, q) = (l, z2, . . . , zn) for some z2, . . . , zn. So, ϕ = ψη. This completes the

proof of the theorem. �
Remark 3.1. The assumption in Theorem 3.1 that height(I ) = n = dimA was used only to
arrange that L is an invertible ideal with L + J = A. The proof of the theorem shows that
Theorem 3.1 is also valid for any local complete intersection ideal J = (f1, . . . , fr ) + J 2

of height r � dim(A) and invertible ideals L with J + L = A.

As a consequence of the above theorem the naturality of ϕL with respect to ηL follows.

Corollary 3.1. Let A be a commutative noetherian ring of dimension n � 2 with Q ⊆ A

and L be a line bundle on Spec(A). Then ϕL = ηLϕA, where ϕA :FnK0(A) → E0(A,A)

and ϕL :FnK0(A) → E0(A,L) are the weak Euler class maps, as defined in Definition 2.2
and ηL :E0(A,A) → E0(A,L) is the natural isomorphism.

Proof. Let x = −[A/J ] ∈ FnK0(A) where J is a local complete intersection ideal of
height n. We can write J = (f1, . . . , fn) + J 2 where f1, . . . , fn is a regular sequence. Let
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I = (f1, . . . , fn−1) + J (n−1)!. By Theorem 3.1, there are projective A-modules P,Q of
rankn such that

(1) both P and Q map onto I ,
(2) [P ] − [An] = −[A/J ] = x and [Q] − [L ⊕ An−1] = −[A/J ] = x in K0(A),
(3) det(P ) = A and det(Q) = L.

By definition, ϕA(x) = (I ) in E0(A,A) and ϕL(x) = (I ) in E0(A,L). So, it follows that
ϕL(x) = ηϕA(x). This completes the proof of the corollary. �

Contrary to the above corollary, ΦL and ΦA fail to behave naturally likewise. To give
an example, we recall the construction of Mohan Kumar [13] below.

Example 3.1 (The examples of Mohan Kumar [13]). Let k = Q(t), where t is a transcen-
dental element. Let p be a prime number and f (T ) = T p − t , where T is a polynomial
variable. Note that f (T pr

) is irreducible for all integer r � 1. Mohan Kumar defined homo-
geneous polynomials Fn ∈ k[T0, . . . , Tn], inductively, such that F1(T0, T1) = F(T0, T1) =
T

p

1 f (T0/T1) and Fn+1 = F(Fn, t
unT

pn

n+1) where un = ∑n−1
1=0 pi .

It follows that Fn is an irreducible polynomial of degree pn. So, Sn = V (Fn) is an
irreducible hypersurface of the projective space Pn(k). Let Xn = Pn

k \Sn be the affine open
subset Fn �= 0.

We recall some generalities regarding Chow groups [6] and summarize some facts
from [13]:

(1) Xn is an affine smooth variety over k, with dimXn = n.
(2) Let ζ ∈ CH1(Pn

k ) denote the codimension one cycle defined by a linear equation. Then
CH(Pn

k ) is generated, as a Z-algebra, by ζ .
(3) The restriction map j : CH(Pn

k ) → CH(Xn) is a surjective ring homomorphism.
(4) Let a = j (ζ ) ∈ CH1(Xn). Then CH(Xn) is generated by a as an algebra over Z.
(5) Therefore, CHr (Xn) = (ar ) is generated by ar .
(6) CHn(Xn) = Z/pZ is nonzero.
(7) Therefore ar �= 0 for r = 1, . . . , n.

Following example shows that ΦA and ΦL do not behave naturally with respect to the
natural isomorphism ηL.

Example 3.2. Let X = X3 = Spec(A) be the smooth affine 3-fold over a field k = Q(t),
as in the above example of Mohan Kumar. We will show that ηLΦA �= ΦL for some line
bundle L.

Let CH(X) = ⊕3
r=0 CHr (X) be the total Chow ring of X.

There is a line bundle L on X such that the first Chern class c1(L) = a.
Let P = L⊕L−1 ⊕A and Q = L⊕L−1 ⊕L. The total Chern classes of P,Q are given

by C(P ) = 1 − a2 and C(Q) = C(L)2C(L−1) = (1 + a)2(1 − a) = 1 + a − a2 − a3. So,
c3(P ) = 0 and c3(Q) = −a3. Since a3 �= 0, we have c3(P ) �= c3(Q).
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There is a natural homomorphism πL :E0(A,L) → CH3(X) (see [15]). Then c3(P ) =
(−1)3πA(ΦA(x)) and c3(Q) = (−1)3πL(ΦL(x)). Also note that πA = πLηL.

Let x = [P ] − [A3]. Then x ∈ F 2K0(A) and also x = [Q] − [L ⊕ A2]. We claim that
ηLΦA(x) �= ΦL(x).

There is a surjective homomorphism P → J where J is a local complete intersec-
tion ideal of height 3. Since det(P ) = A, by definition ΦA(x) = (J ) in E0(A,A), and
ηLΦA(x) = (J ) in E0(A,L).

We claim that ΦL(x) �= (J ). For, if ΦL(x) = (J ), then C3(Q) = (−1)3 cycle(J ) =
C(P ), which is a contradiction. Therefore, ΦL �= ηLΦA.

4. Results on Riemann–Roch

In this section, we discuss our results on Riemann–Roch. First, we have the following
lemma on classes of ideals in E0(A,L).

Lemma 4.1. Let A be a noetherian commutative ring of dimension n � 2 and J be
a local complete intersection ideal of height n. Let J = (f1, . . . , fn) + J 2 and Jr =
(f1, . . . , fn−1) + J r . If f1, . . . , fn is a regular sequence, then the class (Jr) = r(J )

in E0(A,L).

Proof. We will write fn = g1. There exists a local complete intersection ideal K1 of height
n such that J ∩ K1 = (f1, . . . , fn−1, g1) and J + K1 = A.

By induction, we can find, for i = 1, . . . , r , elements gi ∈ J and local complete inter-
section ideals Ki of height n such that

(1) J = (f1, f2, . . . , fn−1, gi) + J 2.
(2) J ∩ Ki = (f1, f2, . . . , fn−1, gi).
(3) J + Ki = A and Ki + Kj = A, for i �= j .

We will indicate the proof of the inductive step. Suppose we have picked g1, . . . , gk . We
will pick gk+1. Let P1 = {℘ ∈ Spec(A): K1 ∩ · · · ∩ Kk ⊆ ℘} and let P2 be the set of all
associated primes of (f1, . . . , fn−1). Write P = P1 ∪P2. Let ℘1, . . . ,℘l,℘l+1, . . . ,℘m be
the maximal elements in P . Assume fn /∈ ℘i for i = 1 to l and fn ∈ ℘i for i = l + 1 to m.
Pick λ ∈ I 2 ∩ (

⋂l
i=1 ℘i) \ (

⋃m
i=l+1 ℘i). Write gk+1 = fn + λ. This completes the proof of

the inductive step.
Let ‘overline’ denote mod (f1, . . . , fr−1). Then JrK1 · · ·Kr = J rK1 · · ·Kr =∏
(JKi) = g1 · · ·gr . So, Jr ∩ K1 . . . ∩ Kr = (f1, f2, . . . , fr−1, g) where g = g1g2 · · ·gr .
Therefore, it follows that (Jr) = −∑

(Ki) = r(J ) in E0(A,A).
Also, since the natural map ηL :E0(A,A) → E0(A,L) is an isomorphism (Theo-

rem 2.1), it follows that (Jr) = r(J ) in E0(A,L). This completes the proof of the
lemma. �

Before we state our next theorem, we define a map in the opposite direction to that of
the weak Euler class map ϕL :FnK0(A) → E0(A,L).
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Definition 4.1. Let A be a Cohen–Macaulay ring of dimension n � 2. Define ψL:
E0(A,L) → FnK0(A) as the natural map that sends the class (J ) of an ideal J to the
class [A/J ]. Since J is locally n generated and A is Cohen–Macaulay, it follows that J is
a local complete intersection ideal and [A/J ] ∈ FnK0(A).

It follows immediately that ψL = ηLψA.

We will see that ψL is a well defined group homomorphism in the following theorem.
Following is the statement of our main theorem.

Theorem 4.1. Let A be a Cohen–Macaulay ring of dimension n � 2 that contains the field
of rationals Q. Then,

(1) the maps ϕL :FnK0(A) → E0(A,L) and ψL :E0(A,L) → FnK0(A) are well defined
group homomorphisms,

(2) ϕLψL = −(n − 1)! IdE0(A,L)

and

(3) ψLϕL = −(n − 1)! IdFnK0(A) .

Proof. Write F = L ⊕ An−1 and E0(A,L) = G0/H0(L) as in Definition 2.1. First, we
want to establish that ψL is well defined. Clearly, since A is Cohen–Macaulay, the assign-
ment that sends the class (J ) ∈ G0 of an ideal J to [A/J ] ∈ FnK0(A) defines a group
homomorphism G0 → FnK0(A). Now suppose that there is a surjective map F → J

where J is an ideal of height n. Since A is a Cohen–Macaulay ring, J is a local complete
intersection ideal. It follows that [A/J ] = ∑n

i=0(−1)r [∧rF ] = 0 in K0(A). Therefore,
ψL :E0(A,L) → FnK0(A) is a well defined group homomorphism. (Note that we did not
use the hypothesis that Q ⊆ A to prove that ψL is well defined.)

We have already seen that the weak Euler class map ϕL is well defined. We will prove
that ϕL is a group homomorphism. First, we will prove that ϕA :FnK0(A) → E0(A,A) is
a group homomorphism.

Since the weak Euler class e0(A
n) = 0, it follows that ϕA(0) = 0. Now let x, y ∈

FnK0(A). We can write x = −[A/I ] and y = −[A/J ], where I, J are local complete in-
tersection ideals of height n. We can assume that I + J = A. Let I = (f1, . . . , fn) + I 2

and J = (g1, . . . , gn) + J 2. Write r = (n − 1)! and let Ir = (f1, . . . , fn−1) + I r and
Jr = (g1, . . . , gn−1)+J r . By Theorem 2.5, there are projective A-modules P,P ′ of rank n

such that

(1) There is a surjective map P → Ir and [P ] − [An] = −[A/I ] = x.
(2) There is a surjective map P ′ → Jr and [P ′] − [An] = −[A/J ] = y.

We have,

ϕA(x) + ϕA(y) = e0(P ) + e0(P
′) = (Ir ) + (Jr ) = r(I ) + r(J )

in E0(A,A).
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Let K = I ∩J and K = (h1, . . . , hn)+K2. Write Kr = (h1, . . . , hn−1)+Kr . Again, by
Theorem 2.5, there is a projective A-module Q of rank n such that [Q] − [An] = −[A/K]
and there is a surjective map Q → Kr .

So, [Q] − [An] = −[A/K] = −[A/I ] − [A/J ] = x + y. Therefore,

ϕA(x + y) = e0(Q) = (Kr) = r(K) = r(I ) + r(J ) = ϕA(x) + ϕA(y).

Therefore, ϕA is a group homomorphism. Since ϕL = ηLϕA, it follows that ϕL is a
group homomorphism for any line bundle L on Spec(A).

Now we prove that ϕAψA = −(n − 1)! IdE0(A,A). Let x = (I ) ∈ E0(A,A), where I is
an ideal of height n with μ(I/I 2) = n.

Let I = (f1, . . . , fn) + I 2. Since A is a Cohen–Macaulay ring, we can assume that
f1, . . . , fn is a regular sequence. We can write (f1, . . . , fn) = I ∩ J , where J is a local
complete intersection ideal of height n and I + J = A. So, ψA(x) = [A/I ] = −[A/J ].
Then J = (f1, . . . , fn) + J 2. Write B(J ) = (f1, . . . , fn−1) + J (n−1)!. By Theorem 2.5,
there is a projective A-module P of rank n such that [P ] − [An] = −[A/J ] = ψA(x) and
P maps onto B(J ).

By definition ϕA(ψA(x)) = ϕA(−[A/J ]) = e0(P ) = (B(J )). Now it follows from
Lemma 4.1 that the class (B(J )) = (n − 1)!(J ) = −(n − 1)!(I ) in E0(A,A).

So, ϕA(ψA(x)) = e0(P ) = (B(J )) = −(n − 1)!(I ) = −(n − 1)!x.
We shall now prove that ψAϕA = −(n − 1)! IdFnK0(A). Let x = −[A/J ] ∈ FnK0(A).

Again, let B(J ),P be as above. Then ϕA(x) = e0(P ) = (B(J )). By Theorem 2.4, we have
ψA(B(J )) = [A/B(J )] = (n − 1)![A/J ] = −(n − 1)!x.

This completes the proof of the theorem when L = A.
In the general case, ϕLψL = ηL(ϕAψA)η−1

L = −(n − 1)! IdE0(A,L). Similarly, ψLϕL =
ψLηLϕA = ψAϕA = −(n − 1)! IdFnK0(A). This completes the proof of the theorem. �

Following corollary is a partial answer to Question 1.1 stated in the introduction.

Corollary 4.1. Let A be a regular ring containing the field of rationals Q and dimA =
n � 2. Let πA :E0(A,A) → CHn(A) be the natural homomorphism. Then kernel(πA) is
(n − 1)!-torsion. So, Q ⊗ E0(A,A) ≈ Q ⊗ CHn(A). Also, in particular, if kernel(πA) has
no (n − 1)!-torsion, then πA is an isomorphism.

Proof. Let ζ : CHn(A) → FnK0(A) be the natural homomorphism. Let πA(x) = 0. Since
ζπA = ψA, it follows that ψA(x) = 0. So, (n− 1)!x = −φAψA(x) = 0. This completes the
proof of the corollary. �

The following result was orally communicated to one of the authors by S.M. Bhat-
wadekar. The result is a consequence of Theorem 4.1.

Corollary 4.2 (Bhatwadekar). Let A be a Cohen–Macaulay ring of dimension n � 2 that
contains the field of rationals Q. Then, kernel(ψA) is (n − 1)! torsion.

Following is also a corollary to Theorem 4.1.
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Corollary 4.3. Let A be a Cohen–Macaulay ring of dimension n � 2 containing the field
of rationals Q. Then, the image ϕL(FnK0(A)) = (n − 1)!E0(A,L).

Proof. It is enough to prove ϕA(FnK0(A)) = (n − 1)!E0(A,A). Let x = ϕA(y) be in the
image ϕA(FnK0(A)), where y ∈ FnK0(A). Note that the map ψA :E0(A,A) → FnK0(A)

is surjective. So, ψA(z) = y for some z ∈ E0(A,A). Therefore, x = ϕA(y) = ϕA(ψA(z)) =
−(n − 1)!z is in (n − 1)!E0(A,A).

Conversely, let x = (n − 1)!(I ) ∈ (n − 1)!E0(A,A), where I is an ideal of height
n and I = (f1, . . . , fn−1, fn) + I 2. Since A is Cohen–Macaulay, we can assume that
f1, . . . , fn−1, fn is a regular sequence. Write J = (f1, . . . , fn−1) + I (n−1)!. Then x = (J )

and by Theorem 2.5, x is in ϕA(FnK0(A)). This completes the proof of this corollary. �
The following example shows that ΦL fails to be a group homomorphism.

Example 4.1. Let X4 be the affine open subset of P4
k in Mohan Kumar’s Example 3.1 and

X4 = Spec(A). Let a be the generator of CH1(A), as given in the example. Then we know
that a4 �= 0. Let L be a line bundle on X4 such that the first Chern class c1(L) = a.

We shall see that ΦA is not a group homomorphism on F 2K0(A).
Let P = P ′ = L ⊕ L−1 ⊕ A2. We can write P ⊕ P ′ = Q ⊕ A4 for some projective

A-module Q of rank 4.
So, the total Chern classes C(P ) = C(P ′) = 1 − a2 and C(Q) = 1 − 2a2 + a4. So, the

top Chern classes c4(P ) = c4(P ′) = 0 and c4(Q) = a4 �= 0.
Let x = [P ] − [A4], y = [P ′] − [A4]. Then x + y = [Q] − [A4]. We have 0 = c4(P ) +

c4(P ′) �= c4(Q).
Let πA :E0(A,A) → CH4(A) be the natural map. We have πAΦA = (−1)4c4 on

F 2K0(A). Therefore, it follows that ΦA(x + y) �= ΦA(x) + ΦA(y).
So, ΦA is not a group homomorphism.
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