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1. INTRODUCTION 

All rings that we consider in this paper are assumed to be commutative 
and noetherian. R and A will always denote a ring of this kind. The 
modules that we consider are also assumed to be finitely generated. 

As the title indicates, in this paper we shall be discussing the 
automorphisms of modules over polynomial rings. 

We shall mainly be interested in studying, for a projective module P over 
a polynomial ring R = A [Xl, when is the natural map Aut,(P) -+ 
Aut,(P/XP) surjective? We may refer to this problem as the lifting problem. 

The main result (3.1) about the lifting problem is that if R = 
A lx,, . . . . X,,] is a polynomial ring over A and P is a projective R-module 
with rank P > dim A, then the natural map Aut,(P) -+ Aut,.(P/X,,P) is 
surjective, where A’ = A [X, , . . . . X,, ~ ,I. 

In particular, it follows that (3.3) if R = A[X] is a polynomial ring over 
A and P is a projective R-module with rank P > dim A, then the natural map 
Aut,(P) -+ Aut,(P/XP) is surjective. 

We also conjecture (3.4) that the condition on the rank of the module is 
not necessary. 

The other type of problem that we study is that, for an R = A[X]- 
module M, how does the subgroup SL2( R) EL(R’ 0 M), that is generated by 
SL,( R) and the transvections of R2 @ M, act on the set of all special (type 
of) unimodular elements of R2 0 M. 

This type of study was originally done by Suslin [S2] when M is a free 
module. In some recent developments, Lindel has proved that [L, 2.8, 
theorem] for a projective module P over a polynomial ring R = 

* Present address: University of Kansas, Lawrence, KS 66045. Supported by MSRI, 
Berkeley, CA 94720. 

321 
0021-8693/90 $3.00 

CopyrIght (’ 1990 by Academic Press. Inc. 

All rights of reproductvm m any form reserved 



322 BHATWADEKARANDMANDAL 

A CX,, . . . . X,,] with rank P > dim A, EL(R @ P) acts transitively on the set of 
all unimodular elements of R@ P. 

Our present discussion (Sects. 4, 5, 6) on the action of 
SL,(R) EL(R2@ M) was highly inspired by the work of Lindel [L]. In 
Section 4, we shall make some comments on the work of Lindel and the 
main result (5.2) will be discussed in Section 5. The main result (5.2) is that 
if M is an extended R = A[X]-module, then SL,(R) EL(R* 0 M) acts 
transitively on the set of all special (type of) unimodular elements of R* @ M. 

We also conjecture (6.1) that SL,(R) EL(R2 @ P) acts transitively on the 
set of all special (type of) unimodular elements of R2 @ P, whenever P is a 
projective R-module. And the counterexample (6.2) will show that we need 
to assume that P is projective. 

The study of the lifting problem will be done in Sections 2 and 3. The 
action of SL,(R) EL(R’ @ M) will be discussed in Sections 4, 5, 6. 

2. PRELIMINARY DISCUSSIONS AND NOTATIONS 

As mentioned in the Introduction, the emphasis of our discussions in this 
paper lies in the “lifting problem”; i.e., if R = A [X] is a polynomial ring over 
a noetherian and commutative ring A and if P is a projective R-module, then 
is the natural map Aut,(P) + Aut,(P/XP) surjective? The main results on 
this problem will appear in the next section. In this section, we shall do 
some preliminary discussions and set up some notations. 

First we shall record some of the well-known results and immediate 
comments. 

(2.1) Let R = A[X] be a polynomial ring over A and let P be an 
extended R-module. Then the map Aut,(P) + Aut,(P/XP) is surjective. 

(2.2) Let R be as in (2.1) and let P be a projective R-module of rank 
one. Then the map Aut,(P) + Aut,(P/XP) is surjective. 

(2.3) Suppose that R is as in (2.1). Assume that P is projective and that 
it contains a unimodular element. Then the map Aut,(P) + Aut,(P/XP) is 
surjective if and only if the map SL,(P) -+ SL,(P/XP) is surjective. 

(2.4) Let R = A[X] be a polynomial ring over a local ring A and let P 
be a projective R-module. Then the map SL,(P) + SL,(P/XP) is surjective. 

Proof. See [BR]. 

Before we continue with further discussions it will be convenient if some 
of the definitions and notations are introduced. 

(2.5) Notation. Suppose that M is an R-module and p (resp. g) is an 
element of A4 (resp. M*). Then pg (or peg) will denote the R-linear 
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endomorphism of M that sends m to g(m) p. If p is considered as a map 
from R to M then this notation is consistent with that of the composition 
of maps. 

DEFINITION. Let M, p, g be as above. If g(p) = 0, then 1 +pg is an 
automorphism of M. An automorphism of M is called a transuection of M 
if it is of the form 1 +pg with g(p) = 0 and if p is a unimodular element of 
A4 or if g is a unimodular element in M*. 

(2.6) Notations. (i) For an R-module M, EL(M) will denote the sub- 
group of Aut,(M) that is generated by all the transvections of M. If I is an 
ideal of R, then EL(M, I) will denote the subgroup Aut,JM) that is 
generated by transvections 1 +pg such that pg = 0 modulo I. If M is projec- 
tive or if I is generated by a nonzero divisor, then for a generator 1 +pg 
of EL(M, I), as p or g is unimodular, it follows that either g is in ZM* or 
p is in ZM. 

Now follow several lemmas about these subgroups of the automorphism 
groups. 

(2.7) LEMMA. Suppose R is a commutative noetherian ring and Z is an 
ideal of R. Zf M is an R-module, then EL(A4, I) is a normal subgroup of 
Aut,(M). 

Proof It is an immediate consequence of the fact that for a generator 
1 +pg of EL(M) and an automorphism u of M, u( 1 +pg)u PI = 
1 + u(p)(gul). 

Notation. For an R-module M, Urn(M) will always denote the set of all 
unimodular elements of M. 

(2.8) LEMMA. Let R = A[X] be a polynomial ring over A. Suppose that 
P is a projective R-module and Z is an ideal of A. Zf the natural map 
Urn(P) + Um(P/ZP) is surjective, then the map EL(P, X) -+ EL(P/IP, X) is 
also surj’ective. 

Proof: It is easy to see that the surjectivity of the map Urn(P) -+ 
Um(P/ZP) implies that the map Um(P*) + Um((P/ZP)*) is also surjective. 

Suppose that the transvection 1 +pg is a generator of EL(P/ZP, X). That 
means that pg = 0 module (X). Assume that p is unimodular. Then g is in 
X(P/ZP)*. So, g = Xg’ for some g’ in (P/ZP)*. 

Let q be in Urn(P) such that its image in P/ZP is p. Also let f, and f2 be 
elements in P* such that f, is a lift of g’ and fi(q) = 1. As Xg’(p) = 0, 
g’(p) = 0 and hence f,(q) = b is in ZR. 
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Write f = Xfi - bXf . Then f is in XP* and f(q) = 0. Clearly, 1 + qf is in 
EL( P, X) and it is a lift of 1 +pg. 

In a similar way we can lift 1 +pg when g is unimodular. This completes 
the proof of (2.8). 

The following is a variant of a proposition of Lindel ([L, 2.71; see 4.3 
for the statement). Like the proposition of Lindel in his paper, this proposi- 
tion plays a key roll in the proof of our main theorems ((3.1) and (3.2)). 
We shall go into detailed discussions on Lindel’s proposition [L, 2.71 in 
our later sections (Sects. 4, 5, 6). And now we shall state our proposition. 

(2.9) PROPOSITION. Let R = A[X] be a polynomial ring over a 
noetherian and commutative ring A and let A4 he an R-module. Assume that 
s is in A and X is a nonzero divisor on M. Also assume that pl, p2, . . . . pr 
(resp. g,, g,, . . . . g,) are elements in M (resp. M*) such that the matrix 
((g,, p,): i, j= 1 to r) = diagonal( 1, 1, s, . . . . s). 

Writep(X)=f,(X)p, +f*(X)p,+ ... +,f,(X)p,, wheref,, . . ..fr are in R 
such that (1) .fr = 1 modulo (sX), (2) f, is a manic polynomial in R, 
(3)f,(O)=Ofor i=2 to r, arid(4) (f,,fi ,..., f,)=R. 

Then for polynomials h and h’ with h(0) = h’(O) = 0, whenever h -h’ is in 
(sX), there are automorphisms u in SL,(R, sX) EL(M, X) such that 
u(p(h( X))) =p(h’( X)). (Note that substitution ,for X in the expression for 
p(X) has obvious meaning.) 

(2.10) Remark. (i) Note that under the hypothesis of (2.9) Rp, + Rp, 
can be identified with R2. Under this identification M= R2 0 N where 
N = {q in M: g,(q) =g,(q) = O}. And that is why SL,(R) can be identified 
with a subgroup of Aut,(M) in a natural way. The statement of (2.9) has 
to be read with this natural convention in mind. 

(ii) Also note that by (2.7) EL(M, X) is a normal subgroup of 
Aut,(M) and hence SL,( R, sX) EL(M, X) is a subgroup of Aut,(M). 

As in the proof of Lindel’s proposition, we need the following lemma of 
Suslin. 

(2.11) LEMMA [S2, Lemma 2.11. Let R=A[X] be a polynomial ring 
over A and let c=g,(X)f,(X)+g,(X)f,(X) be in An (f,,f2). Thenfor an 
ideal I of R and elements a and h in R, whenever a-b is in cl there is a 
matrix u in SL,(R, I) such that u(,fi(a), f;(a)) = (f,(b), f,(b)). 

Proof of (2.9). Because of (2.10) we see that SL,(R, sX) EL(M, X) is a 
subgroup of Aut,(M). We are required to prove that if h and h’ are poly- 
nomials in R with h(0) = h’(0) =0 and h-h’ in (sX), then there is an 
automorphism u in SL,( R, sX) EL( M, X) such that u( p(h( X))) = p( h’( X)). 
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Write G = SL,( R, sX) EL(M, X). And let J= {b in A: whenever h and h’ 
are polynomials in R with h(O) = h’(O) = 0 and h -h’ is in (ML), there is 
a u in G such that u(p(h(X)))=p(h’(X))}. 

It is obvious that J is an ideal of A. We shall prove that J= A. 
First we shall prove that A n (f,, fi) is contained in J. 
To prove this let h = d, f, + d, fi be in A and let h and h’ be in R such 

that h(O) = h’(O) = 0 and h-h’ is in (MC). Then by Suslin’s lemma (2.10), 
there is an automorphism u in SL,(R, sX) such that u(f,(h(X)), 

f,@(W)) = (fiw(m)? f*(h’(J-)I). 
As h-h’ is in (hsX), f(h(X)) -f(h’(X)) is also in (bsX) for all poly- 

nomials ,f in R. Therefore, Ah(X)) =f,(NW)p, +f2(h(JJ)p2 + 
f;(h’u?) P3 + . . . +f,(h’(X))p, - hw for some w in sXN. 

Write U, = (1 + d,(h(X))wg,)(l + d,(h(X))wg,). Then u, is in EL(M, X) 
and u,(p(h(X)))=p(h(X))+d,(h(X))f,(h(X))w+d,(h(X))f,(h(X))w= 
P(h(X))+bw =f,(h(m)P, +f2(h(X))PZ+f3(h’(X))P3+ “’ +frw(m)Pr. 
And hence uu,(p(h(X)) =p(h’(X)). This shows that b in in J. That means 
that A n (f,, ,f*) is contained in J, as it was claimed. 

To prove that J= A, we assume the contrary that J is contained in a 
maximal ideal m of A. Since (f,, fi) + sR = R and f2 is manic, it follows 
that (fi ,f2) n A +sA = A. As (f,, ,fi) n A is contained in J, s does not 
belong to m. 

Again as f, = 1 modulo (sX), there are polynomials c3, . . . . c, in R such 
that (c,,f,)+mR= R, where c=fi +sXc,f,+ ... +~Xc,f,. 

Now we shall prove that (c, fi) n A is contained in J and hence in m. 
Suppose that h is in (c, f,) n A and h and h’ are polynomials in R with 

h(O) = h’(O) = 0 and h -h’ is in (s&C). 

Let 4 =U +PA.W~W%~)U +~~h(X)c,(h(X))g,)...(l +P~W) 
c,(h(X))g,). Then u1 is in EL(M, X) and u,(p(h(X)))=c(h(X))p, + 
f*vo3)P* + ... +fr(MW)P,. 

In a similar way there is u2 in EL(M, X) such that u,(p(h’(X))) = 
C(h’(W)P, +fAh’W))P* + .” +frWW))Pr. 

By Suslin’s lemma (2.11) we can find an automorphism u3 in SL,(R, sX) 
such that u3(c(h(W)~l +~AMX))P~ +f3V4J3)~3 + ... +~MX))P~) = 
c(h’(J’))~, +f2h’W))~, +f3(NW)~3 + ... +~MX))P,. As in the pre- 
vious claim, we can also see that there is u4 in EL(M, X) such that 
%(W(W)P, +f,(h’(X))p,+f,(h(X))p,+ ..’ +f,(h(X))p,)=c(h’(X))p, 
+fi(h’(‘u)P, +.f3(h’(X)) P3 + ... +frW’(W)Pr. 

So, if we write u=u;‘u~u~u~, then u is in SL,(R, sX) EL(M, X) and 
u(p(h(X)))=p(h’(X)). Hence b is in J. So, as we have claimed, it is estab- 
lished that (c, fi) n A is contained in J and hence in m. 

But this leads to a contradiction because we already have that 
(c, f2) + mR = R and that fi is manic and hence (c, f;) n A + m = A. This 
shows that J= A. Therefore Proposition (2.9) is established. 
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3. ON LIFTING OF AUTOMORPHISMS 

In this section we shall prove our main results on the lifting problem. 

(3.1) THEOREM. Let A be a commutative noetherian ring of finite Krull 
dimension and let R = A [X,, . . . . X,,] be a polynomial ring over A. Suppose 
that P is a projective R-module with rank( P,,,) > dim A for all y in Spec R. 
Then the natural map Aut,(P) -+ Aut,,(P/X,P) is surjective, where 
A’=A[X,, . . . . X,, ,I. 

Proof: By standard arguments we can assume that A is reduced and 
that P has constant rank. Because of (2.2), we can also assume rank(P) > 1. 

Now let g be an automorphism of P/X,,P. We would like to lift g to an 
automorphism of P. 

By “barring” we shall always denote “modulo X,.” 
We can find a projective R-module Q such that F= PO Q is free. 

Obviously, g@ Id, can always be lifted and hence g@ Idp 0 Id,- can also 
be lifted to an automorphism. This means that there is an automorphism 
H: P@F+ P@F such that A=g@IdF. 

By using downward induction on the rank of the free module F, it 
is enough to prove that tf g: P-+ P is an automorphism of P and if 
H: PO R + PO R is also an automorphism of PO R such that I?= g@ Id,-, 
then there is an automorphism G: P + P of P such that G = g. 

Now (3.1) will follow from the following theorem (3.2). 

(3.2) THEOREM. Let A be a commutative noetherian ring with finite 
Krull dimension and let R = A[X,, . . . . X,,] be a polynomial ring over A. 
Suppose that P is a projective R-module with constant rank strictly bigger 
than max(1, dim A). Then, lf (a, p) is a unimodular element in R@ P 
with (a, p) = (1, 0) modulo X,, then there is an automorphism u in 
EL(R @ P, X,) such that u(a, p) = (1, 0). 

Proof: Since rank P > max( 1, dim A), by [BR], P = R @ P’ for some 
projective R-module with rank P’b 1. Write Q = R@ P= R*@ P and 
r = rank Q > max(2, dim A + 1). 

We shall use induction on dim A to prove the theorem. Also note that 
at each step of the induction it is enough to assume that A is reduced. 

If dim A = 0, then A, being reduced, is a product of fields. Therefore, by 
the theorem of Quillen [Q] and Suslin [ Sl ] P’ is free. As (a, p) = ( 1,0) 
modulo X,, by Suslin’s theorem [S2, Corollary 2.51 it follows that there is 
u in EL(Q, X,) such that u(a, p) = (l,O). So the theorem is proved for 
dim A = 0. 

Now we shall assume that dim A > 0. 
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Let S be the set of all nonzero divisors of A. Then S-‘P’ is free [Q, Sl] 
of rank r - 2. So, we can find a nonzero divisor s of A and a free sub- 
module F of P’ with basis p3, . . . . p, such that F,s = P,s. By replacing s by an 
appropriate power of s, we may assume that there are elements g,, . . . . g, in 
P’* such that ((g,, p,): 3 < i, j< r) = diagonal(s, . . . . s) and such that sP’ is 
contained in F. 

Let p, and pz denote, respectively, the elements (1, 0,O) and (0, 1,0) in 
Q = R2 0 P. And for i= 3 to r, we can extend g, to elements in Q* by 
putting gl(p,)=g,(p,)=O. We define g, and g, in Q* such that 
((g,, p,): 1 <i,j62)=diagonal(l, 1) and gilp,=O. Thus we have the 
matrix ((g,, p,): 1 < i, j d r) = diagonal( 1, 1, s, . . . . s). 

We shall write X, = X and a = f, . We can write (a, p) = f, p, + f2 pz + p’, 
where f, and f2 are polynomials in R and p’ is in P’. As (a, p) E (1, 0) 
modulo (X), f,(O) = 1, f*(O) = 0, and p’ is in XP’. 

Since dim(A/sA) < dim A, by the induction hypothesis there is U’ in 
-WQ/sQ,W such that u’(f,q, +.f2q2+q’)=ql, where q,, q2, q’ are, 
respectively, the images of p,, pz, p’ in Q/se. By [L, Proposition 1.121, the 
natural map Urn(Q) -+ Um(Q/sQ) 1s surjective. Hence by (2.8), there is u in 
EL(Q, X) that lifts u’. Hence by replacing f, p, + f2 p2 +p’ by its image 
under U, we can assume that f, = 1 moduio (sX), f; is in (sX), and p’ is 
in sXP’. 

Since f, p, +,f2 p2 +p’ is in Urn(Q) and f, = 1 modulo(sX), f; p, + 
sXf p2 +p’ is also in Urn(Q). Therefore, by the theorem of Eisenbud and 
Evans [EE], there are elements h, in R and p” in P’ such that ideal 
R( f, + sXh,f2) + O(p’ + sXf p”) has height at least dim A + 1. Therefore, 
after a change of variables that sends Xi to Xi + XN for i = 1 to n - 1 and 
X to X, where N is large enough, we can assume that the ideal 
R(f, + sXh, f2) + 0( p’ + sXf, p”) contains a manic polynomial h(X) with 
coefficients in A [X, , . . . . X, ~ ,I. 

We shall write B = A[X,, . . . . X,- ,] and R= B[X]. We also write 
h(X)=h’(X)(f, +sXh,f,)+g(p’+~Xf~p”) for some g in P’*. Let d be a 
positive integer such that ,f2 + F’h(X) is a manic polynomial in X with 
coefficients in B. We shall again regard g as an element of Q* by putting 
g(P,)=dP,)=o. 

We shall define elements ui for i = 1 to 4 in ,!X(Q, X) as follows. 
Put U, = 1 +p*sHz, g,, z42= 1 +sXp”g,, u3= 1 +p2Xdh’(X)g,, uq= 1+ 

p2Xdg. Then by replacingf,p,+f,~,+p’ by u,u,u~u,(~,P,+~~P,+P’) 
we may assume that f, = 1 modulo(sX), f2 is a manic polynomial with 
coefficients in B, and f2(0) = 0 and also that p’ is in sXP’. Since sP’ is 
contained in F, we have that p’ = X(f, p3 +f4 p4 + +,f,p,) for some 
polynomials f3, . . . . f, in R. 

Thusf~p~+f2p~+p'=.flpl+f2p2+W3pp,+ ...+Wrpr. Sincef,=l 
modulo(sX) and fi is manic, there is h in B such that 1 - sb is in (f,, f2). 
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Moreover, since fi p, + f2 p2 + Xfx p3 + . . . + Xf, p, is in Um( Q) and Q, is 
free with basis p,, . . . . pr and fi = 1 modulo(sX), it follows that 
(fl,f*,Xf33,...,Xf~r)=R. 

By an application of (2.9) with h(X)=X and h’(X)= (1 -sb)X, 
we get automorphisms u5 in EL(Q X) and u6 in SL,(R, sX) such 

that ~#AP,+~P~+W~P~+ ... +XCP,) = f;~,+f;~~+(1-s@ 

Xf3((1 -sb)X)p,+ ... +(l -sb)Xf,((l -sb)X)p,, where u6(f’,,,f;)= 
(fl((l -sb)X), f2((1 -sbLo). 

Note thatf,(X)-fi((l -sb)X) is in (sX) for i= 1, 2 and also as u6 is in 
SL,(R, sX), fj((l -&)X)-f;(X) is in (sX) for i= 1,2. Hence f’, of, E 1 
modulo(sX) and f;(O) =f2(0) = 0. It also follows that 1 -sh is in 
(f’l,f;)nB=(f,((l -sbP2f2((l -sb)X))nB. 

As f;p, + f;pz + (l-sb)Xf3((l-sb)X)p, + ... + (1 -sb) 
Xf,(( 1 - sb)X) pr is unimodular in Q and 1 - sb is in (f; , f;), it follows 
that f’, p, + f; pz is unimodular in Q. Therefore, there is g in Q* such that 

dfh+fh2)=l andg,.,=O. 
Let u,=l+(X+(sb-l)Xf,((l-sb)X))p,g and oi=l+(sb-1) 

Xfi((l -sb)X)p, for i=4 to r. If u=u3uq...u, then u is in EL(Q,X) 
and ~~,(~IP,+~,P,+~~~PP,+ ... +xfr~r)=o(f;~,+f;~,+(l-sb) 

W3((1 -sbM-)p,+ . ..+(l-sb)Xf.((l-sb)X)p,)=f;p,+f;~,+X~,. 

Now we can write f ‘, = 1 + sXf,” and f; = Xf;’ for some polynomials 
.f; and f;’ in R. Let U,=l-p,f,“g, and Uz=l-p,Xf;‘g, and 
U, = 1 - Xp, g, and put U= VIP ’ U, U, U,. Then since U, and U, are in 
EL(Q,X), Uis also in EL(Q,X). Finally, U(f;p,+f;p2+Xp3)=pl. 

This shows that there is an automorphism u in EL(Q, X) such that 
u(a, p) = ( 1,O). Therefore the proof of (3.2) is complete. 

(3.3) COROLLARY. Suppose that R = A[X,, . . . . X,] is a polynomial ring 
over a commutative noetherian ring A and P is a projective R-module 
with rank(P,.) > dim A at all y in Spec R. Then the natural map 
Aut,(P) + Aut,,( P/(X,+, , . . . . X,,) P) is surjectiue, where 0 < r < n and 
R’ = A[X,, . . . . X,]. 

In particular, tf R = A[X] and P is a projective R-module with 
rank P, > dim A at all y in Spec R then the map Aut,(P) + Aut,(P/XP) is 
surjectiue. 

In view of all these discussions, we pose the following problem. 

(3.4) Conjecture. Suppose R = A[X] is a polynomial ring over A and 
P is a finitely generated projective R-module. Then, is the natural map 
Aut,(P) -+ Aut,(P/XP) surjective? 

(3.5) Remark. We have already made some comments about (3.4) in 
our preliminary discussions (Sect. 2). It is also clear that to prove (3.4) we 
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can assume that A is reduced and P has constant rank. We shall also give 
an example (6.3) to show that (3.4) fails when P is not projective. 

With this we close our discussions on lifting of automorphisms. 

4. ACTION OF SL,(R)EL(R2 @M) ON SPECIAL UNIMODULAR ELEMENTS 

A careful analysis of the work of Lindel (see [L, 2.71 and our proof of 
the lifting theorem (see (2.9)) reveals that, for a finitely generated module 
A4 over a polynomial ring R = A[X], the study of the action of 
SL,(R) EL( R2 0 M) on the set of special (type of) unimodular elements of 
R2 @ M plays an important roll in both the cases. 

As a technical tool, this kind of study was initiated by Lindel [L, 2.71. 
In the rest of this paper we shall be studying when this kind of an action 
is transitive on the set of all special (type of) unimodular elements of 
R2@A4. 

In this section we set up some more notations, preliminaries that we 
need for the rest of our discussions and we also make some remarks on the 
work of Lindel [L]. In fact, the work of Lindel [L] is the main motivation 
for the discussions in this section and later. In Sections 5 and 6 we shall, 
respectively, discuss our results and a counterexample related to this 
investigation. 

Preliminaries and a Remark on Lindel’s Work 

As before R and A will always denote noetherian and commutative rings. 
We shall first define special unimodular elements and fix some notations. 

(4.1) DEFINITION. Let R = A [X] be a polynomial ring over A and let 
M be an R-module. A unimodular element (fi(X), f2(X), m) of R2 0 M will 
be called a special unimodular element if f, is a manic polynomial. 

(4.2) Notations. As in (2.10), note that SL,(R) is a subgroup of 
Aut,(R2 @ M) in a natural way. And as before, by SL,(R) EL(R2 @ M) we 
shall mean the subgroup of Aut.(R* 0 M) generated by SL,( R) and 
EL(R’@ M). 

Now we are ready to discuss the work of Lindel. 
In [L], Lindel proved that [IL, 2.81 for projective modules P over 

R = A [X, , . . . . X,,] with rank P > dim A, EL( R @ P) acts transitively on the 
set of all unimodular elements of R@ P. In his proof he used a very elegant 
proposition, the variant (2.9) of which was of much use to us. We shall 
state Lindel’s proposition. 
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(4.3) PROPOSITION [L, (2.7)]. Let R = A [X] be a polynomial ring ouer 
A and let A4 be an R-module. Suppose p3, . . . . pm (resp. g,, . . . . g,) are 
elements in M (resp. Hom(M, R)) such that (gi(pj))3Gu,,Lm= 
diag(s,, . . . . sm) for some s3, . . . . s, in A. Zf (fi,f2, s,f3, . . . . smfm) is a 
unimodular row in R” with f, manic, then for all a and b in R there is an 
automorphism U in SL,(R) EL(R’@M) such that U(f,(a), f2(a), 

fJa) p3 + ... +f,(a)p,)= (f,(b),f,(b),f,(b)p,+ ... +f,(b)p,). 

This elegant proposition can also be improved a little further. Although 
this improvement will still remain technical, it may be worthwhile to 
mention it. 

(4.4) PROPOSITION Suppose we have a situation as in (4.3). Then for all 
b in R, there is an automorphism U in SL,(R) EL(R2@ M) such that 
U(f,(b),f,(b)>f,(b)p, + ... +f,(b)p,)= (l,O> 0). 

Proof By (4.3) it is enough to assume b = X. 
We have f,(X) is a manic polynomial and (f,(X), f2(X), 

s3f3(‘0 ...> s, f,,,(X)) is a ummodular row. Let T be an indeterminate over 
R. Then for suitable integers r ,, . . . . r, if F,(T) = T’lf,(X- T+ T-‘), 
F2(T) = T’2f2(X- T+ T-l), . . . . F,(T) = T’mf,(X- T+ TP’), then F, is a 
manic polynomial in T and F,(O) = 1 and Fi( T) is in TR[T] for i = 2 to 
m. Since the A-algebra map R[T, T- ‘I+ R[T, TP’1 that sends X to 
X- T + T-- ’ and T to T is an automorphism and F,(O) = 1, it follows that 
(F,(T), FAT), M,(T), . ..> s, F,,,( T)) is a unimodular row in R[ T]“. 

By (4.3), there is an automorphism u in SL,(R[T]) EL(R[T12@ 
MO R[T]) such that u(F,(T), FAT), FOPS+ ... +F,(T)p,)= 
(F,(O), F,(O), FOP, + ... +F,(O)p,,)= (l,O, 0). 

Now by “substituting T= 1” (i.e., by tensoring with R[ T]/( T- 1) R[ T]) 
we get an automorphism u = u (modulo T - 1) in SL,( R) EL( R2 0 M) such 
that u(fi(X), f2(X), f3(X)p3+ ... + f,(X)p,)= (l,O, 0). This completes 
the proof of (3.4). 

The idea of the proofs of both (4.3) and (4.4) will be used in what 
follows in Section 5. 

5. TRANSITIVITY OF SL,(R)EL(R'@M) WHEN M Is EXTENDED 

With (4.3) and (4.4) in mind, for an R= A[X]-module M, it may be 
natural to ask, under what conditions on A4 does SL,(R) EL(R’ @ M) act 
transitively on the set of all special unimodular elements of R’OM. If we 
assume that A4 is extended from A, then (5.2) settles this question. We shall 
also see (6.2) that we cannot expect such a statement to hold always. 

Our key result (5.1) extends the result of Suslin [S2], Proposition (3.4)] 



AUTOMORPHISMS OF MODULES 331 

where M was assumed to be free. Before we state (5.1) we shall fix some 
notations and conventions. 

For a polynomial ring R = A [X] over a commutative ring A and an 
extended R-module M= M,@ R, where M, is an A-module, an element p 
of A4 can be thought of as a “polynomial” with coefficients in M,. For this 
reason, an element p of M will often be denoted by p(X) and substitution 
for X will make perfect sense. Similarly, elements of Hom,(M, R) can also 
be thought of as polynomials with coefficients in Hom,(M,, A). 

(5.1) THEOREM. Let R = A[X] be a polynomial ring over A and let M be 
an extended R-module. Suppose that p(X) = (f,(X), f2(X), ps(X)) is a 
special unimodular element in R2 0 M with f, manic. Also suppose that I is 
an ideal of R and write G = {u in SL,(R) EL(R’@ M): uz Id modulo I}. 
Then for elements a, b in R, whenever a - b is in I, there is an automorphism 
u in G such that u(p(a))=p(b). 

ProoJ Let J= {C in A: for a, b in R, whenever a -b is in cl, there is u 
in G such that u(p(a)) =p(b)}. It is a routine checking that J is an ideal. 
We only need to show that J = A. 

Since p(X) is unimodular in R2 0 M, there is an element h3(X) in 
Hom,(M, R) such that Rf, + Rf2 + R(h,(X), p3(X)) = R. 

We claim that if g2( X) = f=(X) + (h3(X), p3(X)) d(X) for some poly- 
nomial d(X), then (Rfl + Rg2) n A is contained in J. 

Suppose c = r,(X) f,(X) + r=(X) g=(X) is in A and a - b is in cl. Then we 
are required to show that there is u in G such that u(p(a)) =p(b). 

Write p, = (1, 0,O) and p2 = (0, l,O). Define u1 = 1 +p2 d(a) h,(a) and 
u2= 1 +p2 d(b) h,(b), where we consider d(a) h,(a) and d(b) h,(b) as 
elements in (R2@ M)*. Then u1 and u2 are in EL(R2@ M). Moreover 
Alma))= (f,(a), gda),p,(a))=q, (say) and u2(p(b))=(f,(bh g2(bhp3(b)) 
=q2 (say). 

Write q3 = (f,(a), g,(a), p,(b)); then q1 - q3 = ((40, p3(a) -p,(b)) = cw 
for some w in ZM. 

Let pr, and pr2 be, respectively, the projections from R2 @ M to the first 
and the second coordinates. Define u3 = (1 - r,(a)wpr,)( 1 - r2(a)wpr,). 
Then, as w is in ZM, u3 is in EL(R2 @ M, I). Also u,(q,) = 
(fi(a), g,(a), p,(a) - cw)) = q3. 

Since c = r,(X) f,(X) + r=(X) g=(X) is in (Rf, + Rf2) n A, by Suslin’s 
Lemma (2.11) there is u4 in SL,(R, I) such that u,(f,(a), g2(a))= 

(f,(b), g,(b)) and hence u4(q3)= (f,(b), g,(b), p,(b)). 
Hence it follows that if u = u;~K,u~u~, then u is in SL,(R) EL(R’@ M) 

and u(p(a)) =p(b). In fact, as u, c u2 modulo Z, u is in G. This proves that 
c is in J. Hence, as it was claimed, (Rf, + Rg,) n A is contained in J, 
whenever gz is of the form ,f2(X) + (h,(X), p3(X)) d(X). 
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Finally, we prove that J= A. This part of the proof is also as that in 
Lindel’s proof of (4.3) or that of (2.9). 

Suppose J is contained in a maximal ideal m of A. Then R/mR +fi R is 
a semilocal ring of dimension zero. The image of (f*(X), (&(X), p3(X))) 
in (R/mR +f, R)* is a unimodular row. Hence it follows that there is a 
polynomial d(X) in R such that the image offi + (&(X), p3(X)) d(X) 
in R/mR+f,R is a unit. Hence, if g,(X) =f2(X) + (h,(X), p3(X)) 
d(X), then Rfi + Rg2 + mR= R. Since fi is manic, it follows that 
(Rft + Rg,) n A + m = A. Since we have seen that (Rfi + Rg,) n A is con- 
tained in J, J + m = A. This contradicts that J is contained in m. Therefore 
the proof of (5.1) is complete. 

Our main result (5.2) in this section is a consequence of (5.1). There are 
other consequences listed below. 

(5.2) THEOREM. Suppose R and M are as in (5.1) and p(X) = 
(f,(X), f2(X), p3(X)) is a special unimodular element in R*@M with 
fi manic. Then for all a in R there is an automorphism u in SL,(R) 
EL(R*@M) such that u(p(a)) = (1, 0, 0). In particular, =2(R) 

EL(R* @ M) acts transitively on the set of all special unimodular elements of 
R2@M. 

Proof By (5.1) we can assume that a = X. 
Let T be an indeterminate over R and let F,(T)=Tdf,(X-T+TP1) 

where d= degree(f,). Again, for some suitable integer r, F2( T) = 
T’f,(X- T+ T-‘) is in TR[T] and q,(T) = T’pJX- T+ T-l) is in 
T(MO RCTI). 

As p(X) is unimodular in R[T, TP’]*@M@ R[T, T-‘1, it follows that 
p(X- T+ T- ‘) is also unimodular. Hence q(T) = (F,(T), F2( T), q3( T)) is 
also unimodular in R[ T, TP’]*O MO R[T, T-l]. As F(0) = 1, it follows 
that q(T) is a special unimodular element in R[ T] * 0 MO R[ T]. 

So, by (5.1), there is an automorphism U in SL,(R[T]) EL(R[T]*O 
M@ R[T]) such that U(q( T)) = q(0) = (1, 0,O). By “substituting T= 1” we 
get an automorphism u in SL,(R) EL( R* 0 M) such that u(q( 1)) = 
(1, 0, 0); i.e., u(p(X)) = (1, 0, 0). This completes the proof of (5.2). 

Using another standard argument of Suslin, we have the following 
corollary. 

(5.3) COROLLARY. Suppose R and M are as in (5.1). Then EL(R3 0 M) 
acts transitively on the set of all special unimodular elements of R3 @ M. 

Remark. When M is free, (5.3) was proved by Rao [R]. 

The following cancellation theorem of Swan [SW] also follows from 
(5.1). 
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(5.4) COROLLARY (Swan). Suppose R = A[.%‘, , . . . . X,] is a polynomial 
ring over A and P is a finitely generated projective R-module that is extended 
from A. If rank(P) > dim A, then P is cancellative. 

Proof: Suppose f: Q 0 R + P 0 R is an isomorphism. We have to show 
that P is isomorphic to Q. 

Let f(0, 1) = (p, a). By standard arguments, we can assume that a is a 
manic polynomial in X,. Also note that, since P is extended from A 
with rank P > dim A, by Serre’s theorem P= MO R for some extended 
projective R-module M. Now it follows that (p, a) is a special unimodular 
element in MO R’ and hence by (5.2), there is u in SL,(R) EL(P@ R) 
such that u(p, a) = (0, 1). Hence (5.4) is established. 

6. A QUESTION AND COUNTEREXAMPLES 

In view of (4.4) and (5.2) the following is a very natural question. 

(6.1) Question. Suppose R = A[X] is a polynomial ring over A and P 
is a finitely generated projective R-module. Does SL,(R) EL(R2 0 P) act 
transitively on special unimodular elements of R2 @ P? 

For projective modules of large enough rank, Lindel gave an affirmative 
answer (see [L, (2.8)]) to this question (6.1). 

We also give a counterexample (6.2) that if P is nonprojective then (6.1) 
does not have an affirmative answer. 

(6.2) EXAMPLE. Let S=K[X,,X,,X,]/(X:+X:+X:- 1) be the 
coordinate ring of a sphere over the field, K of real numbers. Suppose P is 
the kernel of the map S3 + S that sends the standard basis e, , e2, e3 to the 
image of X, , X2, X3 in S. Clearly PO S is isomorphic to S3, but it is well 
known that P is not isomorphic to S2. 

Eisenbud and Evans [EE, Example] used this example to produce some 
interesting counterexamples. We are going to use their example for our 
purpose. 

Write R=S[Y,, Y,] and Z=(Y,, Y,)R, Q=P@R, M=Q@Z and 
N= R2 @ I. Clearly, R@ M = R 0 N. It was shown in [EE, 8, Example] 
that M is not isomorphic to N. 

Suppose U: R@ A4 + R 0 N is an isomorphism and U( 1,0) = 
(fi,f2,.f3,f4) in RON=R301. 

Since Hom(Z, R) = R (see the proof of [EE, 8, Lemma 7]), it follows 
that (f, , f2, f3, f4) is a unimodular row in R4. Hence by [EE, 3, Corollary 
21 there is gI,g2,g3 in R such that F,=f,+g,f,, F2=f2+g2f4, 
F3 = f3 + g2 f4 then height(RF, + RF, + RF,) 2 3. 
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As dim S= 2, we can make a change of variables Y, + Y, + Y;, Y, -+ Y, 
and assume that H, F, + H, F, + H, F, = F is manic in Y,, for some 
H,, H,, H,. We can assume that H,, H,, H, is in Y,R, and hence in I, 
and also that Y, - degree(F) > Y2 - degree(f,). 

Define u,, u2, u3 in EL(R304 by ~,(a,, a2, a3, a,)= (a, +g,a,, 
a2 +g2a4, a3 +g3a4, a,), ~2(aI,a2,a3,a4)=(aI,a2,a3,a4+aIHI+a2H2 
+ a3H3), and u3(a11 a,, a3, a41 = (aI + a4 Y:, a2, a3, a41 for all 
(a,, a,, a3, a4) in R3 @ I. 

For high enough t, if h = u3u2uI then h(f,, f2, f3, f4) is a special 
unimodular element of R3 @I. And there is no automorphism of R3 0 I 
that sends h(f,, ,f2, ,f3, f4) to (LO), because otherwise M will be 
isomorphic to N. 

This shows that SL,(R) EL(R3 0 I) does not act transitively on the set 
of special unimodular elements. 

The following example will show that Conjecture (3.4) fails for non- 
projective modules. 

(6.3) EXAMPLE. Suppose (A, m) is a discrete valuation ring and 
R = A [XI. Let M = (m, X). Then M/XM is isomorphic to m @ A/m. As 
in (6.2), note that Hom.(M, R) = R and hence Hom,(M, M)= R and 
Aut,(M) = units of R. As m 0 A/m has automorphisms that are not multi- 
plication by units, it follows that the map Aut,(M) -+ Aut,(m/XM) is not 
surjective. 
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