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Introduction

In ([Mu2], Theorem 3.7) Murthy proved the following

Theorem 1. Let A be a reduced affine algebra of dimension n over an alge-
braically closed field F with F"K,(A) torsion free. Suppose P is a projective
A-module of rank n. Let f: P — I be a surjection where 1 = A is a local complete
intersection of height n. Assume that [A/I] =0 in Ky(A). Then there exists a
surjection from P to A. (i.e. If the top Chern class of P vanishes, then P has a
unimodular element.)

A relative version of Theorem 1 was proved by Mandal and Murthy ([MM],
unpublished):

Theorem 2. Let A be a reduced affine algebra of dimension n over an alge-
braically closed field F with F"K,(A) torsion free. Let P be a projective A-module
of rank n. Suppose f: P — I, is a surjective map where 1, < A is a local complete
intersection of height n. Assume that I, = A is a local complete intersection of
height n, satisfying the property that [A/l,] = [A/1,] in Ky,(A). Then there exists
a surjection g: P — I,.

We note that Theorem 2 implies Theorem I.

The theorems proved in this paper were motivated by a conjectural formula-
tion of Theorem | in the case when A is a noetherian ring with dim A = n.
Roughly one wants to prove the following.

Conjecture. Let A be a noetherian ring with dim A = n. Let P be a projec-
tive A-module with rank P = n. Suppose that the “n™ Euler class of P” vanishes,
then P has a unimodular element.

We must of course define what one means by the n'* Euler class of P. In
Section 1 we define an Euler Class group. The conjectural version of Theorem
2 is stated in Section 1, Question D.
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The idea of Section 1, is to use the concept of homotopy of sections of
projective modules to define an Euler Class group. We only give a sketch and
refer the reader to Section 1 for details.

Let A be a noetherian ring with dim 4 = n. Let P be a projective A-module
with rank P = n. Suppose that we are given a surjective map f: P — I,, where
I, = A is an ideal of height n. Let I, = A be an ideal of height n. Under
certain conditions, we want to say that there exists a surjection g: P — I,.

If such a g exists, then we can construct a homotopy ¢ : P[t] — I such that
1) dim A[t]/I =1
2) YyO) =/ y()=g.

Thus we are led to asking when such a homotopy exists. In this connection
we ask the following (see Question B in Section 1):

QUESTION: Let A be a noetherian ring with dim 4 =n. Let I < A[t] be
an ideal such that dim A[t]/I =1. Let P be a projective A-module of rank
n. Suppose f: P — [(0) is a surjective map. Assume that there exists a surjection
@: P[t]/IP[t] > I/I* such that ¢(0) = f mod I(0)2. Does there exist a surjection
Y: P[t] = I such that ¢ lifts ¢ and y(0) = f?

This question has been answered in the affirmative in the case when I
contains a monic polynomial and n >3 in [Ma] (see Theorem 2.1, [Ma]).
Bhatwadekar, Mohan Kumar and Srinivas (unpublished) have shown that the
answer to the above question is negative in general. In their counterexample
the ring A is normal but not regular. One expects that the answer to the above
Question is “Yes” if A is regular and dim 4 > 3.

In Section 1 we point out the connection between the above question and
a group to evaluate Euler Classes. In Section 2 we answer a particular case of
the above question in the affirmative (see Theorem 2.3). We use Theorem 2.3
in Section 3 to prove the following addition and subtraction principles which
are related to Theorem 2 of this introduction.

Theorem 3. Let A be a noetherian ring with dim A =n>3. Let I, and I,
be two comaximal ideals of height n in A such that 1, is generated by n elements.
Suppose P is a projective A-module of rank n with trivial determinant. Assume
that there exists a surjective map f: P —1,. Then there also exists a surjection
g:P->1,N01,.

This theorem is proved in Theorem 3.2.
We also prove (see Theorems 3.5 and 3.14) the following subtraction principle.

Theorem 4. Let A be an affine algebra over a field F with dim A = n > 3.
Let I, and I, be two co-maximal ideals of height n in A such that I, is generated
by n elements. Suppose P is a projective A-module of rank n having trivial determi-
nant. Let f: P —1,N1, be a surjective map. Then there is a surjection g: P — I,
in the following cases.
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1. I, is a maximal ideal corresponding to an F-rational point of Spec A.

2. I, is the intersection of finitely many maximal ideals m,, m,, ... where
the ideals m;, satisfy the property that A/m; is quadratically closed for
every i.

We recall that a field k is quadratically closed if every element of k is a
square. For example algebraically closed fields are quadratically closed.

We now state the previously known results dealing with Theorems 3 and
4 in chronological order.

Theorems 3 and 4 were proved by Mohan Kumar in the case where A is
a reduced affine algebra over an algebraically closed field or a reduced finitely
generated algebra over Z, P = A" and I,, I, are local complete intersections of
height . Mohan Kumar also proved Theorem 4 in the case when I, = A under
the same conditions (cf. [MK] Theorem 1, Theorem 2, Corollary 1).

Theorem 4 was proved by Murthy ([Mu2] Theorem 1.3) in the case when
A is a reduced affine algebra over an algebraically closed field or a reduced
finitely generated algebra over Z, and I, I, are local complete intersections of
height n.

Theorem 3 follows from unpublished results of Mandal and Murthy ([(MM])
in the case when A is a reduced affine algebra over an algebraically closed field
with F"K,(A) torsion free.

Theorems 3 and 4 were proved in [RS1] in the case when I, = 4 (cf. [RS1]
Theorems 1, 2 and S5). The two dimensional analogues of Theorems 3 and 4
follows from results of [RS2]. In view of this, we assume after the preliminaries
that the dimension of A4 > 3.

Using Theorems 3 and 4 we classify in Section 4, those real affine quadric
hypersurfaces of dimension n, over which any projective module of rank n has
a unimodular element. This includes some examples of Murthy ([Mu2] 3.10).

In Section 5, we prove the following subtraction principle.

Theorem. Let A be a noetherian ring such that dim A = n is even. Let I,
and I, be two comaximal ideals of height n in A such that 1,/I? and I,/I? are
free A/l and A/I, modules of rank n. Suppose that 1, and 1,1, are generated
by n elements. Then there exists a stably free A-module P of rank n mapping
surjectively onto I,.

In Section 0, we state some preliminaries.

In this paper all rings considered are assumed to be commutative, noetherian
and to have identity elements. All modules considered are assumed to be finitely
generated. All mappings considered are either A-linear or ring homomorphisms
(depending on the context).

We close this introduction with a few words about the notation. Generally
m, m; will be maximal ideals. Let A be a noetherian ring with dimA=n. A
maximal ideal m of A is said to be regular if A, is a regular local ring of
dimension n. By e; we mean the element (0,0,...,0,1,0,...,0) where the 1 is
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in the i™ place. If I < A[¢] is an ideal, and se 4, let I(s) = {f(s)|fel}. For
all other unexplained notation and definitions we refer to [Ba].

§0. Some preliminaries

In this section, we state some known results and recall some standard defini-
tions. These will be used in later sections.

Definition 0.1. Let 4 be a commutative ring. A row (ag, a,, ..., G,.;) € A""2
is said to be unimodular if there exist by, by, ..., b,;; in 4 such that Y ¥} a;b, = 1.

Definition 0.2. Let A be a noetherian ring. Let P be a projective A-
module. An element p € P is said to be unimodular if there exists a linear map
f: P — A such that f(p)=1.

We now state a theorem of Serre.

Theorem 0.3. Let A be a noetherian ring with dim A = d. Then any projec-
tive A-module having rank > d has a unimodular element.

For a proof of this theorem we refer to ([Ba], Page 173). From Theorem
0.3, we deduce

Corollary 0.4. Let A be a noetherian ring with dim A = 1. Then any projec-
tive A-module having trivial determinant is free.

We state a theorem which was proved by Swan-Towber and independently
by Suslin. We refer to [Sw-To] for a proof of this theorem.

Theorem 0.5. Let (a, b, ¢) e A®> be a unimodular row. Then there is a matrix
in SLy(A) having (a®, b, ¢) as its first row.

§1. Nori’s group to evaluate Euler Classes

The contents of this section are due to Nori. We thank Nori for giving
us permission to include this section in our paper.

1.1. Definition of a group. Let A be a noetherian ring with dim A = n and
S be the set of pairs (m, k), where m is a regular maximal ideal of A and k: A/m —
A"m/m? is an isomorphism. Let G be the free abelian group generated by S.

Suppose P is a projective A-module of rank n having trivial determinant.
Assume that f: P — J is a surjective map with J = (")m;, where the m; are regular
maximal ideals of 4. Let i": 4> A"P be an isomorphism. We can associate
to the pair (f,i’) an element of G in the following manner. Let bar denote
reduction modulo J. We consider the following sequence of isomorphisms

A/ — ATPIIP 2T, Any1g2

The composite isomorphism gives rise in a natural way to an element of G.
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1.2. Relations given by curves. Let as before 4 be a neotherian ring with
dim 4 = n. Let I € A[t] be an ideal which satisfies the following properties.

1. dim A[t]/I =1

2. I/I? is generated by n elements

3. A"I/I? is isomorphic to A[t]/I

4. 10)=(\ym;=J and I(1) = (| m] = J', where the m; and m; are regular

maximal ideals of A. (Here I(0), I(1) denote the specialisations of I at
0 and 1).

Any isomorphism k[t]: A[t]/I - A"I/I* gives rise, when we specialize at t = 0
and t = 1 to two elements g, and g, € G. Suppose that there exists a projective
A-module P of rank n and having trivial determinant and a surjection f: P — J,
and an isomorphism i’: 4 - A"P such that the element of G associated to the
pair (f,i') is go. We now pose the following question.

QUESTION A: Does there exist a surjection g: P —J' such that the element
of G associated to (g,i’) is ¢,?

1.3. A Question of Nori. In order to answer question A the following
question was posed by Nori:

QUESTION B: Let A be a noetherian ring with dim A =n>3. Let I < A[t]
be an ideal such that dim A[t]/I = 1. Let P be a projective A-module of rank
n. Suppose f: P — I(0) is a surjective map. Assume that there exists a surjection
@: P[t]/IP[t] = I/I? such that ¢(0) = f mod I(0)>. Does there exist a surjection
W: P[t] = I such that ¢ lifts ¢ and ¢(0) = f?

Theorem. An affirmative answer to Question B implies an affirmative answer
to Question A.

Proof. Let h: (A[t]/1)" — I/I* be any surjection. We may assume by altering
by a suitable automorphism of (4[t]/I)" that

A"h(e; A ey... ~e,) = k[t](1).

Since P[t]/IP[t] is a projective module of trivial determinant over A[t]/I (which
has dimension 1), by Corollary 0.4, P[t]/IP[t] is a free A[t]/I module of rank
n. We choose an isomorphism #: P[t]/IP[t] — (A[t]/I)" such that A"£(i'(1)) =
e, Ae,o Ae,. We can do so by choosing any isomorphism and altering it by
a suitable automorphism of (A[t]/I)". There exists an element k' € GL,(A/J) such
that h(0)o k' o £(0) = f mod J2. By the choice of our isomorphisms, it follows
using exterior powers that k' e SL,(4/J). We have a surjection j: A[t]/[ - A/J
that sends any polynomial to its constant term. Since k'€ SL,(A4/J) and A/J
is semilocal, k' € E,(4/J). We lift k' via j to an element ke SL,(A[t]/I). The
surjection ¢ = hk/: P[t]/IP[t] — I/I? satisfies the property that ¢(0) = f mod J2.
If Question B has an affirmative answer, then there exists a surjection y: P[t] — I
such that y lifts @ and Y(0) = f. We set g = y(1). Then g satisfies the property
required of it by Question A. Thus Question A has an affirmative answer.
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Therefore we are led to Question B which has been answered affirmatively
by Mandal ([Ma] Theorem 2.1) if I contains a monic polynomial. Bhatwadekar,
Mohan Kumar and Srinivas have constructed a counter example to Question B
if one does not assume I contains a monic polynomial (unpublished). However
the ring A4 in their example is normal but not regular. This leads to the following
natural question.

QuesTioN C: Is the answer to Question B Yes if 4 is regular?

We do not know the answer to Question C.

In this paper we answer Question B in the affirmative (cf. Section 2, theorem
2.3) in some particular cases, which arise naturally when one tries to prove
Theorem 3 and Theorem 4 of the introduction.

1.4. Nori’s group to evaluate Euler Classes. Let H be the subgroup of G
generated by the set of all g, —g,, where g, and g, are obtained in 1.2, by
running through the set of all ideals I satisfying the conditions of 1.2. We define
G/H to be a group to evaluate Euler Classes.

Let P be a projective A module of rank n having trivial determinant. Let
f:P—J be a surjective map where J = ()j_;m;. If we choose an isomorphism
i' A— A"P then we obtain an element g, e G/H associated to the pair (f,i’)
which we call the nth Euler class of P. Generalizing Question B, one can ask.

QUESTION D: Suppose there exist Ay, 43, ..., 4;€ G such that the element
go— (A + A5 + -+ X)) e H. Does there exist a surjection g: P — ()} m] such
that A}, + A5 + -~ + A, is the element of G associated to (g, i')?

Remark. Question D is the conjectural version of Theorem 2 stated in the
Introduction. One can similarly formulate a conjectural version of Theorem
1. We do not know the complete answer to any of the Questions A-D.
However the formalism of this section will be used often in the proofs of the
theorems of the later sections.

§2. Homotopy theorems

Let A be a commutative noetherian ring. Let P be a projective A-module
and R = A[t]. By a homotopy of sections, we mean an R-linear map :
P®, A[t]—-R.

In [Ma] a question of M. V. Nori about homotopy of sections of projective
modules was considered. In this section, we prove a variant of Thm. 2.1 of
[Ma]. This is used frequently and is the main ingredient in the proofs of the
theorems in the next section. We first recall some notation.

2.1. Notation. Let A be a commutative ring and R = A[t].
1) For an ideal I = R, let 1(0) = {f(0)|f eI}
2) For an A-module M, let M[t] = M ®, A[t]. If f: M[t] - R is a homotopy
of sections, and s is any element of 4, let f(s) be the specialization of f at t =s.
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The following is essentially a restatement of Theorem 2.1 of [Mal].

2.2. Theorem. Let R = A[t], where A is a commutative noetherian ring. Let
I = R be an ideal which contains a monic polynomial. Suppose P is a projective
A-module with rank P > dim R/l + 2 and f: P — I(0) is a surjective map. Assume
that there is a surjection @: P[t]/IP[t] — I/I* such that ¢(0) = f mod 1(0)>. Then
there is a surjection Y: P[t] — I, such that  lifts ¢ and Y (0) = f.

Further if K is the kernel of Wy and ue 1N A, then K, is an extended projective
module.

Proof. Only the last assertion is new. It follows from the proof of Theorem
2.1 of [Ma], that K, is a locally extended projective module and is therefore
globally extended by [Q].

The following theorem is a variant of the above theorem (2.2) and is the
main result of this section.

2.3. Theorem. Let A be a commutative noetherian ring and R = A[t]. Sup-
pose I =1'N1" is the intersection of two ideals I' and 1" in R such that

1. I’ contains a monic polynomial,

2. I"=1"(0)R is an extended ideal and

3. I'+I"=R.
Suppose P is a projective A-module of rank r > dim R/I' + 2 and f: P - 1(0) and
@: P[t]/I'P[t] - I'/I'* are two surjective linear maps such that ¢(0) = f mod I'(0)2.
Then there is a surjective map : P[t] — I such that {(0) = f.

Proof. Let J'=I1'NA. Since I' has a monic polynomial and I” is extended,
it follows that J' + I"(0) = A. (see [La], Chapter 3, Section 1). We choose s,
in J' and s, in I"(0) such that s, +s, = 1. By Theorem (2.2) above, there is a
surjection ¥: P, [t] — I5, = I, such that ,(0) = f,,. Further, by the last asser-
tion of (2.2), if K is the kernel of ¥, then Ki,, is an extended projective module.

Let ¢, = f,, ® A[t]: P, [t] = I =, let K, =Ker ¥y, =Kj, and K, =
ker '70252'

We have exact sequences

Vig
0- Kl - R\‘,sz[t] _2’ Is/:sz = Aslsz[t] -0
Yoy,

0-K,->P,[t]l— I, = A, [t]>0

Let bar denote reduction “modulo t”. Since ¥,(0) = f;, and ,(0) = f,, and

K, and K, are extended projective modules, there is an isomorphism ay: K, —» K,
such that the diagram

0 > El Ps,s; . I(O)S‘SZ As|s2 — 0
Jao 1d Id
0 EZ > Ps,sz l’ I(O)slsz = As,sz — 0

commutes.
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We can find isomorphisms a: K, - K, and f: P, [t]— P, ,,[t] such that
& =a, and f = Id and such that the diagram

0 > Kl Pslsz[t] - Is,sz — 0
la lﬁ {Id
0 KZ > Pslsz[t] — Is,sz — 0

commutes.

Since f =Id, by Quillen’s lemma (See, for example, [Ma], Lemma 1.2)
B = B,B* with B, e Aut P, [t] and P, € Aut P, [1], with B, =B, =1Id. Hence
(l//ZﬂZ)sz = (1B, )sl'

By patching P, [t] and P, [t] via the isomorphism f~': P,  [t] - P, , [t], we
get a projective A[t]-module P'. Let yn;: P"—> 1 be the map got by patching
Y: P[t] = I, and ,: P [t]— I and let n,: P[t]—> P' be the map got by
patching f,: P,,[t] — P,,[t] and B,: P [t] — P [¢].

It follows that #, is an isomorphism and that = 5,n,: P[t] — I is surjective.
Since B, = Id and B, = Id, it follows that ¥ (0) = f,, and ¥, (0) = f,. Therefore
Y(0) = f. This completes the proof of Theorem (2.3).

The following is an interesting extension of Theorem (2.2).

2.4. Theorem. Let A be a regular ring, essentially of finite type over a field
k and R = A[t] be the polynomial ring. Let I =1'N1" be the intersection of two
ideals I' and 1" in R such that

1. I' contains a monic polynomial,

2. I"=T1"(0)R is a extended reduced ideal of height r > 3 such that A/I"(0)

is regular,

3. I'+I"=R.

Suppose P is a projective A-module of rank r >dim R/I' + 2 and suppose
fiP—I10) and o¢:P[t]—>I/I* are two surjective linear maps such that
¢ modulo (¢, I) = f modulo 1(0)%.

Then there is a surjective map \: P[t] — I such that { lifts ¢ and y(0) = f.

Proof. 1Tt is essentially similar to the proof of (2.3) and we only outline
the difference. We pick s;, s, as in (2.3). By (2.2) there is a surjective map
Y,: P [t] = I, such that y,(0) = £, and ¥, lifts ¢,. By ([Ma], Theorem (2.3)),
there is a surjective map ,: P, [t] = I, such that y,(0) = f;, and ¢, lifts ¢;,.
Since A is regular, and essentially of finite type over a field k, by Lindel’s theorem
([Li]), ker (,),, and ker (y,),, are extended projective modules. The rest of the
proof is similar to that of (2.3). To see that y: P[t]— I lifts ¢, note that
p;=Id modulo I for i =1, 2.
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§3. Some addition and subtraction principles

In this section, we prove the addition and subtraction principles stated in
the introduction. We begin with a key lemma which is proved in ([RS1],
Lemma 3).

Lemma 3.1 (Nori). Let A be a noetherian ring with dim A =n. Let [ = A
be an ideal of height n which is generated by n elements a,, a,, ..., a,. Suppose
that J is an ideal of height n in A such that I +J = A. Then, we can find a
matrix C belonging to E,[A] such that [a,,a,,...,a,]CT = [c,,c,,...,c,], where
¢y, Cyy ..., C, are a set of generators of I satisfying the following properties

1. dim A/(cy,¢5yovvsCpey) = 1,

2. (¢1,€CppeeesCuy)+J=A

We now prove the following

Theorem 3.2 (Addition Principle). Let A be a noetherian ring with dim A =
n>3. Let I, and I, be two comaximal ideals of height n in A such that I, is
generated by n elements. Let P be a projective A-module of rank n with trivial
determinant. Suppose that there exists a surjective map f:P —1,. Then there
also exists a surjective map g from P to I, N1,.

Proof. By Lemma 3.1, we may choose a set of generators c,, ¢,, ..., ¢, of
I, such that

1. dim A/(cy, ¢py--ehCpy) =1

2. (C15CppeenCpq)+ 1, =A

Let I'=(c;,¢p0evenCuqst — 1), 1I"=1,A[t] and I =1'N1". The module
P[t]/I'P[t] is a projective module of trivial determinant over the ring A[t]/I'
(which has dimension 1 by (1)). By Corollary 0.4, P[t]/I'P[¢] is free. We choose
an isomorphism ¢/: P[t]/I'P[t] — (A[t]/I')". Composing ¢ with the surjection h:
(A[t)/I'Y* > I'/T'* (which sends e; to ¢;, 1 <i<n—1 and e, to t — 1), we obtain
a surjection ¢ = h/: P[t]/I'P[t] - I'/I'%. Since I'(0) = A, ¢(0) = f mod I'(0)>.. By
Theorem 2.3, we obtain a surjection y: P[t] — I. Specializing ¢ at t =1+ c,,
we obtain a surjection from P to I, NI,. This completes the proof of (3.2).

n

Setting I, = A in the above theorem, we obtain the following corollary which
was proved in [RS1]. We remark that the proof of 3.2 works even when I, = A.

Corollary 3.3 ([RS1], Theorem). Let A be a commutative noetherian ring
with dim A =n>3. Let J be an ideal of height n which is generated by n
elements. Suppose P is a projective A-module of rank n with trivial determi-
nant. Suppose further that P has a unimodular element. Then there exists a
surjective map g from P to J.

Corollary 3.4. Let A be a commutative noetherian ring with dim A = n > 3.
Let I, and I, be two comaximal ideals of height n in A, which are both generated
by n elements. Then so is I,NI,.
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Corollary 3.4 was proved in [RS1] (see [RS1] Theorem 4). The two dimen-
sional analogue of Corollary 3.4 is proved in [RS2] (see [RS2] Theorem 2.3).

Theorem 3.5. Let A be an affine algebra over a field F with dim A = n > 3.
Let I, < A be a maximal ideal which corresponds to a F-rational point of Spec A.
Let I, € A be an ideal of height n which is comaximal with I,. Suppose P is a
projective A-module of rank n with trivial determinant. Suppose further that there
exists a surjective map f:P—I1,N1,. Then there also exists surjective map g
from P to I,.

Proof. By Lemma 3.1, we choose a set of generators c,, c,, ..., ¢, of I,
such that

1. dim A/(cy, €5y ..., Cumy) = 1,

2. (C1yCpyeeesCuy)+ 1, = A

Let I'=(c;, ¢y, .vrCheyst —c,) and 1" =1, A[t]. As in Theorem 3.2, we
have an isomorphism /: P[t]/I'P[t] - [A[t]/I')", and a surjection h: (A[¢]/I')" -
I'/I'*. We therefore obtain a surjection ¢ = h# from P[t]/I'P[t]— I'/I'>. There
exists an element k' € GL,(A/I,) such that h(0)o k' o £(0) = f mod I(0)> = I?. We
have a map j: A[t]/I' > A/I, which sends any polynomial to its constant term.
Since A/I, 3 F and A is an affine algebra over F, we see easily that the map
j' induced by j from GL,(A[t]/I') to GL,(A/I,) is a surjection. We lift k'
via j/ to an element k belonging to GL,(A[t]/I'). The surjection ¢ = hk¢:
P[t]/I'P[t] —» I'/I'* satisfies the property that ¢(0) = f mod I{. Applying Theo-
rem 2.3, we obtain a surjection y: P[t] —» I, where I = I'NI". Specializing y at
t=1+¢, we obtain a surjection from P to I,.

In order to prove the next theorem, we need some lemmas.

Lemma 3.6. Let B be a finitely generated algebra over Z with dim B = 2.
Let J = B be an ideal which is generated by two elements a,, a,. Let ue B be
a unit modulo J. Then there exists a matrix C € M,(B) with det (C) = u modulo J
such that [a,,a,]C" = [c,,c,] and (c;,c,)=J.

Proof. We choose v e B such that uv = 1 mod J. Let f: B> > J be defined
as follows: f(1,0,0) =0, f(0,1,0) = a,, f(0,0,1) = a,. The element (v, a,, —a,) €
ker f and is unimodular, since v is a unit mod J. Since B is a finitely generated
algebra over Z with dim B = 2, by a theorem of Vaserstein ([Su-Va], Corollary
18.1), (v, ay, —a,) is completable to a matrix

v, djp, —da,
D= |c¢ A, 4y, | €SL;s(B)
d Ay Ay
Since D € SL,(B), the rows of D generate B>, therefore the elements f(v, a,, —a,),
flc, Ayys Arz), fld, Ayq, A5,) generate J. Hence the elements d; = 4,,a, + 4;,4a,

. A A .
and d, = A,,a, + 4,,4a, generate J. The matrix C = <1“ 12) satisfies the re-
21 22

quired properties.
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Before we state the next remark, we need a well known lemma whose proof
is included for completeness.

Lemma 3.7. Let A be a commutative ring with 2 invertible in A. Let ue A
be a unit, such that u is a square modulo the nil radical of A. Then u is a
square in A.

Proof. Let u+ A= w? where Ae A is nilpotent. Then, u(l + Au"') = w2
Since Au! is nilpotent and 1€ A4, 1 + Au~! = y?, for some y e A which is a unit
(cf. [La], Lemma 2.5, Chapter 6). Thus u = (wy™')%

Remark 3.8. All that is used in the proof of 3.6 is that the unimodular
row (v, a,, —a,) is completable. This is true (by the Swan-Towber, Suslin Theo-
rem) if v is a square mod (a,, a,). This will be so if either
a) Af(a,,a,) is a product of quadratically closed fields or
b) if A is an affine algebra over a field F, Char F # 2 and A/\/(a,,a,) is a

product of quadratically closed fields (using Lemma 3.7).

Using Remark 3.8 and the proof of Lemma 3.6 one can prove the following.

Lemma 3.9. Let B be an affine algebra over a field F. Let J< B be
an ideal which is generated by two elements a,, a,, satisfying the property that
dim B/J =0. Let ue B be a unit modulo J. Assume either that
a) Char F # 2, B/\/j is a product of quadratically closed fields or
b) Char F =2, B/J is a product of quadratically closed fields.

Then there exists a matrix C e M,(B), with det C = umoduloJ such that
[a,,a,]1CT = [cy, ¢,] and (cy,¢;) = J.

We now prove a higher dimensional analogue of Lemma 3.6.

Lemma 3.10. Let A be a finitely generated algebra over Z with dim A =
n>2 Let J< B be an ideal of height n which is generated by n elements
ay, ap, ..., a,. Suppose u€ A is a unit modulo J. Then there exists a matrix
C € M,(A) with det (C) = u modulo J, such that [a,, a,,...,a,]CT = [c}, ¢, ..., C,]
and (¢y, €y ..., ¢,) = J.

Proof. By multiplying the vector [a,, a,,...,a,] by an elementary matrix
and using standard stability arguments ([La], Lemma 3.4, Chapter 3) we may
assume that the a,, a,, ..., a, satisfy the property that dim 4/(a,, a,, ..., a,_,) = 2.
(Note that we use the fact that an elementary matrix has determinant 1). Let
B=A/a,,a,,...,a,.,). Let bar denote reduction modulo the ideal (a,, a,, ..
a,_,). By Lemma 3.6, one can choose a matrix D € M,(B) such that

1. det (D) = umodulo J,

Ll

—_ —_— T - -
2. If [a,_,,a,]D" =[¢,_,,C,), then a,, a,, ..., a,_,, ¢,_,, ¢, generate J.
One sets ¢, =d,, ¢, =d,, .... ¢,_, =a,_, and verifies easily that c,,
¢y, ..., ¢, satisfy the required properties.

Similarly, one can prove the following higher dimensional analogue of 3.10.
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Lemma 3.11. Let A be an affine algebra over a field F with dim A =n > 2.
Let J < A be an ideal of height n which is generated by n elements a,, a,, ...,
a,. Let ue A be such that u is a unit modulo J. Assume that either

1. Char F #2, A/\/j is a product of quadratically closed fields or

2. Char F =2, A/J is a product of quadratically closed fields.
Then there exists a matrix C € M,[A] with det (C) = u modulo J such [a,, a,, ...,
a,]1C" =[c;, ¢y, ..., ¢,] and (cy, ¢y, ..., C,) = J.

We summarize the results from 3.6 to 3.11 for later use as follows.

Corollary 3.12. Let A be a notherian ring with dim A =n. Let J < A be
an ideal of height n, which is genrated by n elements. Assume that J/J? is a
free A/J module of rank n.
Further assume that either
1. A is a finitely generated algebra over Z.,
2. A is an affine algebra over a field F (Char F # 2) and A/\/j is a product
of quadratically closed fields or
3. A is an dffine algebra over a field F, Char F =2 and A/J is a product
of quadratically closed fields
Let h: A/J — A"JJJ? be any isomorphism. Then there exists a set of generators
€y Cgy ... €, Of J such that h(1)=¢&, ACy A+ AT, (bar denotes reduction
modulo J).

Proof. We choose any set of generators a;, a,, ..., a, of J. We see that
h(1) = u(@, A @, A a,) where ue A is a unit mod J. By 3.6, 3.9, 3.10 and 3.11,

@, Ao na,)=¢ A+ nc, for some set of generators ¢, ¢,, ..., ¢, of J.
Remark 3.13. The ¢, ¢,, ..., ¢, in Corollary 3.12 are not unique. For

example one can choose any c¢,, ..., ¢, which satisfy the requirements of 3.12

and multiply the vector [c,,...,c,] by a matrix of determinant 1, to obtain

another set of generators of J satisfying the required property.
We now prove the subtraction principle that was stated in the introduction.

Theorem 3.14. Let A be a neotherian ring with dim A =n > 3. Let I, and
I, be two comaximal ideals of height n in A. Assume further that I, is generated
by n elements and that I,/I} is a free A/l; module of rank n. Let P be a
projective A-module of rank n and having trivial determinant. Suppose that f:
P—I,NI, is a surjective map. Then there exists a surjection g: P —1, in the
following cases
1. A is a finitely generated algebra over Z,
2. A is an affine algebra over a field F, char F # 2 and A/\/I‘1 is a product
of quadratically closed fields.
3. A is an affine algebra over a field F, char F =2 and A/l, is a product
of quadratically closed fields.

Proof. We choose an isomorphism i: 4 - A"P. Let f = f® A/I,: P/I,P —
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1,/I?. We then have the following isomorphisms
A/l 5 A"PILPL Ar I

Let f, = A"foi. By Corollary 3.12, there exist a set of generators c,, ¢,, ...,
¢, of I, such that f,(1)=¢&; A ¢, A ¢, (Where bar denotes reduction modulo
1,). Further, by multiplying the vector [c,, ¢,,...,c,] by an elementary matrix,
one may assume by Lemma 3.1 and Remark 3.13 that

1. dim A/(c;, ¢y ...y ) =1

2. (€1 ChyenCpy)+ 1, =A
Let I'=(cy,Cqr.vvrCugst +¢,), I"=1,A[t], and I=INI". We choose an
isomorphism 7: P[t]/I'P[t] = (A[t]/I')", such that A"/(i(1))=e, Aey'" Ae,
We can choose such an isomorphism # by choosing any isomorphism and altering
it by a suitable automorphism of (A[t]/I')". Composing ¢ with the surjection
h: (A[t]/I')" = I'/I'*> which sends ¢; to ¢;, | <i<n—1and e, to t + ¢,, we obtain
a surjection ¢’ = h¢: P[t]/I'P[t] to I'/I'*. There exists an element k' € GL,(A/I,)
such that h(0)ok'o/(0) = f mod I?. From the way we have chosen various
isomorphisms it follows (using exterior powers), that k' € SL,(A/I;). We have a
map j: A[t]/I' > A/I, which sends any polynomial to its constant term. Since
A/l, is semi local, SL,(A/I,) = E,(A/I,) and we can lift k' via j to an element
ke SL,(A[t]/I'). The surjection ¢ = hk¢: P[t]/I'P[t] — I'/I'* satisfies the prop-
erty that ¢(0) = f mod IZ2. By Theorem 2.3 there exists a surjection y: P[t] - I
Specializing Y at t =1 —¢,, we obtain a surjection g: P — I,.

Example 3.15. Let A= R[X,Y,Z]/(X?>+ Y*>+ Z?> — 1) be the coordinate
ring of the real two sphere. Let P = A%/(x,y,z). We define a surjection f from
P to the ideal generated by y and z in A as follows: f(e,) =0, f(e;) = z, f(e3) =
—y. It is known from topology that P is not free (i.e. there does not exist a
surjection from P to A). This example shows that Theorem 3.14 is not valid
(when I, = A) if we do not assume that either of the conditions 1, 2, or 3
hold. One can similarly construct examples in higher dimensions using even
dimensional spheres.

Corollary 3.16 ([MK], Theorem 2). Let A be a reduced affine algebra over
an algebraically closed field F or a finitely generated algebra over Z with dim A =
n. Let I, and I, be two comaximal ideals of height n in A, which are local
complete intersections. Suppose I, and 1, NI, are both generated by n elements.
Then so is I,.

Remark 3.17. One expects Corollary 3.16 to be true when A is any noethe-
rian ring of dimension n. We refer to the last section for results in this direction.

§4. Projective modules over real quadric hypersurfaces

In this section, we apply the addition and subtraction principles that we
have proved to answer the following question.
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QUuEsTION: Let A be the coordinate ring of a real quadric hypersurface with
dim A =n. Let P be a projective A-module of rank n. When does P have a
unimodular element?

Let A=R[X,, X5, ..., X, 41 /O 121 a, X} — b) where a;,, be R. Let P be a
projective A-module of rank n. We want to say when P has a unimodular
element. The case n =1 is classical.

The case n =2 is also understood in view of results of Murthy (cf. [SW2],
Corollary 16.2).

We consider the case n> 2. We first restate the subtraction principle in
the form that it will be used in this section.

Theorem 4.1. Let A be an affine algebra over R with dim A =n. Let I, = A
be a maximal ideal of height n which is generated by n elements and I, be an
ideal of height n in A which is the intersection of finitely many maximal ideals.
Assume further that 1, + I, = A. Let P be a projective A-module of rank n having
trivial determinant. Suppose that there is a surjection f: P — 1, N1,. Then there
also exists a surjection g: P — I,.

Proof. The residue field A/I; is isomorphic is R or C. The Theorem now
follows from Theorem 3.5 and Theorem 3.14.

The following lemma was proved by Swan (cf. [SW3], Lemma 6.2) in the
case where A is the coordinate ring of the real 2 sphere. The proof we give is
the same.

Lemma 4.2. Let A= R[X, X,...., X,+11/Q. 12 a,X? — b) be as above. Let
m < A be a maximal ideal such that A/m = C. Then m is generated by n elements.

Proof. Let f: A— C be a surjective homomorphism such that ker f = m.
We assume without loss of generality that f(x,)e C — R. Let ¢,, ¢35, ..., ;41 €R
be chosen so that f(x, + ¢;x;), f(x3 + ¢3%;), -.vy f(Xy41 + Coe1X;) belong to R.
Let f(x; + ¢;x,) = d;. Then the elements x; + ¢;x; —d;, 2<i<n+ 1, are in the
kernel of f. These elements generate the kernel, for, if we go modulo these
elements in A, we obtain a two dimensional vector space over R. Now, com-
paring dimensions, we see that these elements generate m = ker f.

Lemma 4.3. Let A= R[X,, X,, ..., X,+11/Q 12} a;X? — b) be as above (where
n>2). Then PicA=0.

Proof. 1f b =0, then A4 is graded and hence Pic 4 = 0 by ([Mul], Lemma
51). If b#0, PicA =0 by ([SW2], Theorem 9.2).

We now answer the question stated in the beginning of the section. The
first two examples are due to Murthy. However the proofs we give are different
(cf. [Mu2], Examples 3.10).

Example 1 (Murthy). Let A= R[X;, X5, ..., X, J/O 2L X2+ 1), n>2.
Then any projective A-module of rank n has a unimodular element.
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Proof. Let P be a projective A-module with rank P = n. By Swan’s Bertini
Theorem ([SW1], Theorem 1.3, 1.4), we can choose a surjection s: P — I, where
I = A is the intersection of finitely many maximal ideals m;. By Lemma 4.3, P
has trivial determinant. Since A/m; > C, by Lemma 4.2, m; is genrated by n
elements. Applying Theorem 4.1 repeatedly, we see that there exists a surjection
s: P— A. Therefore P has a unimodular element.

Example 2. Let A = R[X, X5, ..., X,+; J/Q 121 X?), n> 2. Let P be a pro-
jective A-module of rank n. Then P has a unimodular element.

Proof. The proof is similar to that of Example 1. We choose a surjection
s: P> I, such that I = ()%, m;, where A/m; > C for all i. We can choose such
a surjection by Swan’s Bertini theorem, since A has only one real maximal ideal.

We thank Nori for pointing out the following example. It is due to Barge
and Ojanguren ([BO]) when n = 2.

Example 3. Let 4= R[X,, X5, ..., X1, /O 121 X} — 1), n>2. Let X =§"
(the n sphere). Let P be a projective A-module of rank n. Then P has a
unimodular element if and only if P®, C(X) has a unimodular element (where
C(X) is the ring of real valued continuous functions on X).

Proof. If P has a unimodular element, then clearly P ®, C(X) has a
unimodular element. Suppose conversely that P ®, C(X) has a unimodular
element. Then, one can show using Bertini arguments (as is done in [RS3]),
that there exists a surjection s: P — I with I = (\¥.; m;, A/m; > C for all i. Now
proceeding as in Example [, we see that P has a unimodular element.

Example 4. Let A = R[X,, X,..... X, /X, X, + Y2 a,X?) or A =
R[X{, Xy .oy X0 X, X, + Y123 a, X7 — b) where b #0. Let P be a projective
A-module with rank P = n. Then P has a unimodular element.

Proof. We only prove the case when A = R[X,,X,,..., X,+ /(X X, +
Yirla;X?). The other case is similar. We first show that all real maximal
ideals of 4 which lie outside a closed set Y such that dim Y = n — 1 are generated
by n elements. Let Y =V(X,X,). Let mc A be such that X, X,¢m and
Am>~ R. Then m= (X, — 4, X, — A5, ..., X,41» —A,41), Where 4, € R and 4, #
0, 4, #0. If we go modulo X3 — 43, ..., X,+; — 4,4, in A4, we obtain a principal
ideal domain. Hence after going modulo these n — 1 elements, the image m of
m is principal. Hence m is generated by n elements. By Swan’s Bertini theorem,
we can choose a surjection s: P— I such that I = (), m;, and none of the m;
contains X,;X,. Now using Theorem 4.1 and proceeding as in example 1, we
see that P has a unimodular element.

§5. Subtraction principles and sections of stably free modules
The aim of this section is to prove the following:

Theorem 5.1. Let A be a noetherian ring such that dim A = n is even. Let
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I, and 1, be two comaximal ideals of height n in A such that I,/I} (respectively
1,/1%) is a free A/I, (respectively A/l,) module of rank n. Suppose that 1, and
I, 01, are generated by n elements. Then there exists a surjection from a stably
free A-module P of rank n onto I,.

In order to prove this theorem, we need a variant of Theorem 2.3 whose
proof is the same as that of Theorem 2.3.

Theorem 5.2. Let A be a commutative noetherian ring and R = A[t].
Suppose I =1'N1" is the intersection of two ideals I' and 1" in R such that

1. I contains a monic polynomial,

2. I"=1"(0)R is an extended ideal,

3. I'+1"=R.
Suppose P is a projective A-module of rank r > dim R/l + 2 and f: P —I(0), ¢:
P[t)/IP[t] = I/I* are two surjective linear maps, such that ¢(0) = f mod I(0).
Then there is a surjective map Y: P[t] — I such that y(0) = f.

We now turn to the proof of Theorem 5.1.

Proof of Theorem 5.1. We only prove the case n =4 so that the notation
is simple. The proof in the general case is similar. By Lemma 3.1, we may
choose a set of generators c,, ¢,, ¢3, ¢, of I; such that
a) dim A/(c,, ¢y, ¢3) = 1.

b) (cy,cp,¢c3)+ 1, =4

Let I =(c,, ¢y, 3,1t —cqg)NI,A[t]. We note that 1(0) =1, NI,. We choose
as usual a surjection h[t]: (A[t]/I)* - I/I>. Specializing at t =0, we obtain a
surjection h(0): (4/1(0))* —» 1(0)/I(0)>. We choose any set of generators d,, d,, dj,
d, of I(0)=1,NI,. Taking exterior powers, we obtain an isomorphism

A*h(0): A/1(0) = A*1(0)/1(0)>.

Let A*h(0) send e, A e, A e3 A e, to 5(d, A dy A dsy A d,) (bar denotes reduction
modulo 1(0)), where ve A is such that ve A/I(0) is a unit. We choose an
element ue A such that uv=1mod I(0). Let P = A%/u,d,,d,,ds,d,). Since
uv = 1 mod I(0), there exist 4, 4,, 43, 4, € A such that

uv + /lldl + lzdz + /13d3 + A4d4 = 1.

There is a surjection f: P — I(0) which sends e, to 0, e, to —d,, e; to d,, e,
to —d,, es to d,. (It is here that the assumption that n is even is used. The
rest of the proof will use the fact that n is even). It is easy to verify the element

W=uve, AesAesAes+Aesnesnesne + e Aesne Aey+

generates A*P. Let i: A > A*P be the isomorphism which sends 1 to w. We
have the following sequence of maps

A/10) 5 A*P/IO)P 25 A41(0)/1(0)?
Afoi(ly=bdy Ad, Ady Ady
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We choose an isomorphism ¢#: P[t]/IP[t] - (A[t]/)* such that
A1) =e, A ey, A ey A ey

We can do so by choosing any isomorphism and then altering it by an auto-
morphism of (A[t)/I)*. The map ¢’ = h/ is a surjection P[t]/IP[t]— I/I>. By
the choice of our isomorphisms it follows (using exterior powers) that there exists
k' e SL,(A/I1(0)) such that

h(0) o k' o £(0) = f mod 1(0)*

We have a surjection j: A[t]/I — A/I(0), which sends any polynomial to its con-
stant coefficient. We lift k' via j to an element k € SL,(A[t]/I). We can do this
as SL,(A/1(0)) = E,(A/I(0)) (note that A/I(0) is semilocal). The surjection ¢ =
hk¢: P[t]/IP[t] — I/I1* satisfies the property that ¢(0) = f mod I(0)®.. Applying
Theorem 5.2, we obtain a surjection y: P[t] — I. Specializing ¢ at t=1+¢,,
we obtain a surjection from P to I,, with P stably free of rank n.
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