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Introduction

In  ([M u2], Theorem 3.7) M urthy proved the  following

Theorem 1. L et A  be a  reduced af f ine algebra of  dim ension n over an  alge-
braically  closed f ie ld  F  w ith F"K o (A ) to rsion  f ree . S uppose  P i s  a  projective
A -module of rank  n. L et f : P — > I be a surjection w here I g A  is a local com plete
intersection of  h e ig h t n . A ssume that [A /I] = 0  in K o (A). T hen there ex ists a
surjection f rom  P to  A .  (i.e. If  the top C hern class o f  P  v anishes, then P has a
unimodular element.)

A relative version of Theorem I was proved by M andal and Murthy ([M M ],
unpublished):

Theorem 2. L et A  he a  reduced aff ine algebra of  dim ension n over an  alge-
braically  closed f ield F with F"K o (A) torsion f re e .  L et P be a projective A-module
of  ran k  n . Suppose f: P —> I , is  a surjective map where I , g  A  is a local complete
intersection of  h e ig h t n . A ssume that 1 2 A  is  a local complete intersection of
height n, satisfying the property  that [A /1 1 ] = [A /1 2 ]  in K o (A). Then there exists
a surjection g: P —> 12.

W e note that Theorem  2  implies Theorem 1.
The theorems proved in  this paper were motivated by a  conjectural formula-

tion  o f  Theorem  1 in  th e  c a se  when A  i s  a  noetherian  r in g  with dim A  = n.
Roughly one w ants to  prove the  following.

Conjecture. Let A  be a  noetherian ring with dim A  = n .  Let P be a  projec-
tive A-module with rank P  =  n .  Suppose that the "n"' Euler class o f  P" vanishes,
then P  has a  unim odular element.

W e must of course define what one m eans by the nth E u ler class o f  P .  In
Section 1  we define a n  Euler C lass group. The conjectural version of Theorem
2  is stated in Section 1 , Question D.
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T he  idea  of Section 1 , i s  t o  use the concept of hom otopy of sections of
projective modules to define an Euler Class g ro u p . W e only give a sketch and
refer the  reader to  Section 1 for details.

Let A  be a noetherian ring with dim A  =  n .  Let P  be a projective A-module
with rank P  =  n . Suppose that w e a re  given a surjective m ap f: P  - 4 1 , ,  w here
/ ,  g  A  i s  a n  ideal o f  h e ig h t  n . L e t / 2  g  A  b e  a n  ideal o f  height n. Under
certain conditions, w e w ant to say that there exists a surjection g: P —> 12 .

If such a g exists, then we can construct a homotopy —> I  such that
1) dim A [t]/ I =  1
2) 0(0) = f ,  01) = g.

Thus we are led to asking when such a homotopy exists. In  this connection
w e ask the following (see Question B in Section 1):

QUESTION: L et A  b e  a noetherian ring with dim A = n. L et I A [ t ]  b e
a n  ideal such that d im  A N II  =  1. L e t P  b e  a projective A -m odule of rank
n. Suppose f : P  1 (0 )  is a surjective map. Assume that there exists a surjection
cp: PHIIP[t]—> I I I ' such that (p(0) = f  mod 1(0)2 . Does there exist a surjection

P [t ]  — I th a t tp  lifts (p and t/J(0) = f?

This question has been answ ered in  the  a ffirm a tive  in  the  case  w hen  I
contains a  m on ic  po lynom ia l and  n > 3  i n  [M a] (see Theorem  2.1, [M a]).
Bhatwadekar, Mohan Kumar and  S rin ivas (unpublished) have show n tha t the
answ er to  th e  above question is negative in  g en e ra l. I n  their counterexample
the ring A  is normal but n o t reg u la r . One expects that the answer to the above
Question is  "Y es" if A  is regular and  dim A  >  3.

In Section 1 w e po in t ou t the  connection between the  above question and
a  group to evaluate Euler C lasses. In Section 2 we answer a  particular case of
the  above question in the affirmative (see Theorem  2.3). W e use Theorem 2.3
in  Section  3  to  p ro v e  th e  following addition  and  subtraction principles which
are  related to Theorem  2 of th is introduction.

Theorem 3. L et A  be a  noetherian ring w ith dim A  = n > 3. L et I ,  and
be tw o comaximal ideals o f  height n in A  such that I ,  is generated by  n elements.
Suppose P  is  a  projective A -module o f  rank  n w ith triv ial determ inant. Assume
that there ex ists a surjective m ap f: P —> 12 . T hen there also ex ists a surjection
g: P , (1 12 .

This theorem  is proved in  Theorem 3.2.
We also prove (see Theorems 3.5 and 3.14) the following subtraction principle.

Theorem 4. L e t A  be  an af f ine algebra over a f ie ld  F  w ith dim A = n > 3.
L et 11 an d  1 2  be two co-maximal ideals o f  height n in A  such that I, is generated
by n elem ents. Suppose P is a projective A-module of  rank  n having trivial determi-
n an t .  L et f: P —> I, n 12 h e  a surjective m ap . T hen there is a surjection g: P  12

in the following cases.
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1. I  is a m ax im al ideal corresponding to an  F-rational point of  Spec A.
2. I  is  the intersection of  finitely many m axim al ideals m„, m 2 ,  . . .  where

the  ideals mi ,  satisfy the  property that A /m, is  quadratically closed for
every i.

W e recall that a  fie ld  k  is  quadratically closed if  every element o f  k  is  a
sq u a re . F o r  example algebraically closed fields are quadratically closed.

W e now  state  th e  previously known results dealing with Theorems 3  and
4  in  chronological order.

Theorems 3  and  4  w ere proved by M ohan K um ar in  the  case  where A  is
a  reduced affine algebra over a n  algebraically closed f ie ld  o r  a  reduced finitely
generated algebra over Z, P = A " and  /1 , /2 a re  lo c a l complete intersections of
height n. Mohan Kumar also proved Theorem 4 in the case when 12 = A  under
the same conditions (cf. [M K ] T heo rem  1, Theorem 2, Corollary 1).

Theorem 4  w as proved by M urthy ([M u2] Theorem  1.3) in  the  case  when
A  is  a  reduced affine algebra over a n  algebraically closed f ie ld  o r  a  reduced
finitely generated algebra over Z, and  1 1, 12 are local complete intersections of
height n.

Theorem 3 follows from unpublished results of Mandal and Murthy ([M M ])
in the case when A  is a  reduced affine algebra over an  algebraically closed field
with F"K o (A ) torsion free.

Theorems 3 and 4 were proved in  [RS1] in the case when 1 2 =  A  (cf. [RS1]
Theorems 1, 2  a n d  5). T h e  two dimensional analogues of Theorems 3  a n d  4
follows from results of [R S 2 ] .  In  view of this, we assume after the preliminaries
tha t the dimension of A  > 3.

Using Theorems 3  and  4  we classify in Section 4, those real affine quadric
hypersurfaces of dimension n, over w hich any projective module of rank  n  has
a  unimodular e lem en t. This includes some examples o f  Murthy ([Mu2] 3.10).

In Section 5, w e prove the  following subtraction principle.

Theorem. L et A  be a  noetherian ring such that dim A = n  is even. L et I,
and 12 be two comaximal ideals o f  height n  in  A  such that I , / I f  and I2 /11 are
f ree A/I, and A/I 2 m odules of rank n. Suppose that I, and I, (112  are  generated
by n  elements. Then there exists a  stably f ree A -m odule P  o f  rank n  mapping
surjectively onto 12.

In Section 0 , we state some preliminaries.
In  this paper all rings considered are assumed to be commutative, noetherian

and to  have identity elements. All modules considered are assumed to be finitely
generated. All mappings considered are either A-linear o r ring  homomorphisms
(depending on the context).

We close this introduction with a  few words abou t the  no ta tion . Generally
m, m ; w ill b e  maximal ideals. L e t A  b e  a  noetherian ring with dim A  =  n .  A
m axim al ideal m  o f  A  is  s a id  to  b e  regular i f  A m  i s  a  regular local ring of
dimension n. By e, w e m ean the  element (0, 0, ..., 0, 1, 0, ,  0 )  where th e  1 is
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in the  i t h  p la c e .  I f  / A [t] is  a n  ideal, and  s e A , le t /(s) =  If (s)lf  e /1. F o r
all other unexplained notation and definitions we refer to [Ba].

§0. Some preliminaries

In  this section, we state some known results and recall some standard defini-
tions. These w ill be used in  later sections.

Definition 0.1. Let A be a commutative ring. A row (a,, a 1 , a 1 ) e  A n '
is said to be unimodular if there exist b0 , b 1 . . . . .b , 1 in  A  such that 17f4 ai bi =  1.

Definition 0.2. L e t  A  b e  a  n o e th e r ia n  r in g . L e t P  b e  a  pro jective  A-
m o d u le . An element p e P  is  sa id  to  be  unimodular if there exists a  linear map
f : P  A  such that f (p) = 1.

W e now  state a  theorem of Serre.

Theorem 0.3. L et A  be a noetherian ring w ith dim A = d. Then any projec-
tive A -module having rank > d  has a unim odular element.

F o r  a  proof of this theorem  we refer to ([Ba], P age  173). From Theorem
0.3, we deduce

Corollary 0.4. L et A  be a noetherian ring with dim A  =  1 .  Then any projec-
tive A -module having triv ial determ inant is free.

W e state a  theorem which was proved by Swan-Towber and  independently
by Suslin . W e refer to  [Sw -To] fo r  a  proof of this theorem.

Theorem 0.5. L et (a, b, c)e A ' be  a unim odular row . Then there is a  matrix
in SL 3 (A ) having (a', b, c) as  its f irst row.

§1. Non's group to evaluate Euler Classes

The contents of th is  section are due to  N o n . W e  th a n k  N o n i  fo r giving
us permission to  include this section in ou r paper.

1.1. Definition of a group. Let A  be a noetherian ring with dim A  = n and
S  be the set of pairs (m, k), where m is a  regular maximal ideal of A  and k: A/m
Annon2 i s  an  isom orph ism . L et G  be  the free abelian group generated by S.

Suppose P  is  a projective A-m odule of rank  n  having trivial determinant.
Assume that f : P —> J is a surjective map with J =  n  m i , where the m i a re  regular
maximal ideals o f  A .  L e t i': A  A P  b e  an  isom orph ism . We can associate
to  th e  p a ir  ( f , i ')  a n  element o f  G  in  th e  follow ing m anner. L e t b a r  denote
reduction modulo J. W e consider the  following sequence of isomorphisms

A /J A P / JP - - ' 4 AV/J 2

The composite isomorphism gives rise in  a  natural w ay to  a n  element o f G.
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1.2. Relations given by curves. L et as before A  b e  a neotherian ring with
dim A = n. Let I g  A [t] be  a n  ideal which satisfies the  following properties.

1. dim A [t]//  = 1
2. / / / 2 is generated by n elements
3. Anl/I 2  is isom orphic  to  A [t]/I
4. 1(0) = n m, = J  and 1 ( 1 )  = f l  r n  = J',  where the m i and tn; are regular

maximal ideals o f A .  (Here 1(0), 1(1) denote the specialisations of I  at
0  a n d  1).

Any isomorphism k[t]: A[t]/I — > A"I/1 2  gives rise, when we specialize at t = 0
and t =  1  to two elements g ,  and g, e G .  Suppose that there exists a projective
A-module P  of rank  n  and  having trivial determinant and a surjection f: P —> J,
an d  an  isomorphism i': A —> A P su c h  th a t th e  element o f  G  associated to the
pair (f , i') is  g , .  W e now  pose the following question.

QUESTION A :  Does there exist a surjection g: P —> J' such that the element
of G  associated to (g, i') is g 1 ?

1.3. A Q uestion of  Non. I n  o rder to  answ er question  A  the  following
question was posed by Non:

QUESTION B : L e t  A  be a noetherian ring with dim A  = n > 3. L e t  I g  A [t]
be a n  ideal such that dim A [t]/I = I. L e t  P  be a projective A-module of rank
n. Suppose f: P —> 1(0) is a surjective map. Assume that there exists a surjection
cp: P[t]/IP[t] 1 / 1 2  such that yo(0) = f mod 1(0) 2 . D o e s  th e re  e x is t a surjection
tfr: P[t] —> I  su c h  th a t 0  lifts yo and 0(0) = f ?

Theorem. A n affirmative answer to Question B  implies an  affirmative answer
to  Question A .

P ro o f . Let h: (A[t]/1)" —> 1/1 2  be any surjec tion . We may assume by altering
by a  suitable automorphism of (A [t]/I)" that

A e2 ... A  e„) = k[t] (1).

Since P[t]/IP[t] is a projective module of trivial determinant over A [011 (which
has dimension 1), by Corollary 0.4, P [t]/ IP [t] is  a  free  A [t]/1  module of rank
n. W e choose a n  isomorphism t: P[t]/1P[t] — >(A [t]/1)" su c h  th a t Ant(C(1)) =
e , A e 2 »  A  e„. W e can d o  so by choosing any isomorphism and altering it by
a suitable automorphism of (A [t]/I)". There exists an element k ' c GL„(A /J) such
that h(0) o k' o ((0) = f  mod J 2 . B y  the  choice o f  our isomorphisms, it follows
using exterior powers that k ' E S L „(A /J). W e have a surjection j: A[t]/I —> A/J
tha t sends any  polynomial to  i t s  constan t te rm . Since k' E SL n (A /J) a n d  A /J
is semilocal, k ' n E„(A /J). W e lift k ' via j  t o  a n  element k  E S L (A [t]11). The
surjection co = hke: P[t]/IP[t] — > 1/1 2  satisfies the  property that y9(0) = f  mod J 2 .
If Question B has an affirmative answer, then there exists a surjection 0: P[t] —>
such that 0 lifts go and 0(0) = f . We set g = 01 ). Then g satisfies the property
required of it  b y  Q uestion  A . Thus Question A has an affirmative answer.
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Therefore we are  le d  to  Question B  which has been answered affirmatively
by Mandai ( [M a ] Theorem 2.1) if I  contains a  monic polynom ial. Bhatwadekar,
M ohan Kumar and  Srinivas have constructed a  counter example to Question B
if one does not assume I  contains a  monic polynomial (unpublished). However
the ring A in their example is normal but no t regu lar. This leads to the following
natural question.

QUESTION C : I s  the  answer to Question B  Yes if A  is regular?

W e d o  not know  the  answer to Question C.
In  this paper we answer Question B in the affirmative (cf. Section 2, theorem

2.3) in  som e particular cases, which arise  naturally w hen one  tries  to prove
Theorem 3  and Theorem 4  of the introduction.

1.4. Nod's group to evaluate Euler Classes. L et H  b e  the  subgroup o f G
generated by th e  se t o f  all g o — g l ,  where g ,  a n d  g ,  a re  obtained i n  1.2, by
running through the set of all ideals I  satisfying the conditions of 1.2. We define
G/H to  b e  a  group to evaluate Euler Classes.

Let P  be  a projective A module of rank n having trivial de term inant. Let
f : P  J  be a surjective map where J = , i  r n .  If we choose an  isomorphism
i': A —* AP th e n  w e  o b ta in  a n  element g o e  G/H associated to th e  p a ir  (f, i')
which we call the nth Euler class of P .  Generalizing Question B, one can ask.

L=

QUESTION D : S uppose  there exist Xi. , A'2 , . . . ,  E  G such that the element
— ().', + X2  +  •  •  •  +  Xs ) E  H .  D oes there  exist a  surjec tion  g: P  (T im . ;  such

th a t X, + 22  +  •  •  •  +  ; t s' is  the element o f G associated to (g, i')?

Rem ark. Question D  is the conjectural version of Theorem 2  stated in the
In troduc tion . O ne  can sim ilarly form ulate a  conjectural version of Theorem
1. W e  d o  n o t  k n o w  th e  com ple te  answ er to  any  o f  th e  Q u estio n s  A—D.
However the  formalism o f th is  section w ill be used often in  th e  proofs of the
theorems of the later sections.

§ 2. H om otopy theorems

L et A  be  a commutative noetherian ring. L e t  P  be a projective A-module
a n d  R  = A [ t ] .  B y  a  homotopy of sections, w e  m e a n  a n  R -linear map iii :
P OA  A[t] —> R.

In [Ma] a question of M. V.  Non i  about homotopy of sections of projective
modules w as considered. I n  th is  section, w e prove a  v a r ia n t o f  Thm . 2.1 of
[M a ] . T h is  is used frequently and  is  the m ain ingredient in  th e  proofs of the
theorems in  the  next sec tio n . W e first recall some notation.

2.1. Notation. L et A  be  a commutative ring and R  = A[t].
1) F o r a n  ideal I  g_ R, let 1 (0) = {f(0)1 f e /}
2) For an A-module M, let M [t ] = M  A [ t ] .  If f :  M [t ]  R  is a  homotopy
of sections, and s is any element of A, let ,f(s) be the specialization of f  at t = s.
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The following is essentially a  restatement of Theorem 2.1 o f  [Ma].

2 .2 .  Theorem. L et R  = A [t], where A  is a commutative noetherian ring. L e t
I g  R  b e  an  ideal which contains a m onic poly nom ial. S uppose P is  a projective
A-module with rank P > dim R /I + 2 and f: P -> 1(0) is a surjective m ap. A ssum e
that there is a surjection cp: P[t]/IP[t]-> 1/1 2  such that q)(0)= f  m od 1(0)2 . Then
there is a surjection iP: -> I, such that çli lif ts ça and tp(o) = f .

Further if  K  is the kernel of çI, and u E I CIA , then K u  is  an extended projective
module.

P ro o f . Only the last assertion is n e w . It follows from the proof of Theorem
2.1 o f  [M a ], th a t K u i s  a  locally extended projective module and is therefore
globally extended by [Q].

The following theorem is a  va rian t o f the  above theorem (2.2) and  is  the
main result of this section.

2.3. Theorem. L et A  be a com m utative noetherian ring and R  = A [t]. Sup-
pose I = I' n I"  is  the intersection of  tw o ideals I' an d  I"  in  R  such that

1. I ' contains a m onic polynomial,
2. I" = 1"(0)R  is  an  ex tended ideal and
3. l '  +  I" = R.

Suppose P is a projective A -module of  rank r dim R h ' + 2  and f : P -41(0) and
P[t]/FP[t] -> 171 2  are  two surjective linear m aps such that yo(0) = f  mod r(0) 2 .

T hen there is a surjective map P[t] -> I such that tli(0)= f .

P ro o f . Let J' = I' n A .  Since 1' has a monic polynomial and I" is extended,
it follows that J' + I"(0 )= A .  (see [L a], Chapter 3, S ec tion  1 ). W e choose s,
in  J ' and s 2  in /"(0) such that s, + s 2  =  1 .  By Theorem (2.2) above, there is a
surjection P 2 [ t ]  I  t h a t  0 ,  ( 0 )  =  f s 2 . Further, by the  last asser-
tion of (2.2), if K ', is the kernel of 0 1 , then K', is an extended projective module.

L e t 0 2 = A N : p s i [t] - > =  I ,  l e t  K ,  =  Ker ç1' i s i = K '1 K 2  =
kerip 2 „ .

W e have exact sequences
fr,s2

0 -> K , -> P,,2[t] — 4  i
l S ,  = A55 2 [t] -+0

0 2s20 -> K2— * 15 1 5 2 [t] — > = A 5 1 5 2 [t] -+ 0

Let bar denote reduction "modulo t". Since 11/1(0) = fs 2 a n d  0 2 (0) = f s ,  and
K 1 a n d  K 2  are extended projective modules, there is an isomorphism °co : K 1 -> K 2
such that the  diagram

0 K 1P s o , .1(0)s1s. = A s1s2 0

I ld i l d

O y
' 2 — 4  Ps  i s 2 k u  = A , 2

commutes.
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We can find isomorphisms oc: K 1 --+ K 2 a n d  [I: P5 1 s 2 [t] Ps 1 s 2 [t ]  such that
crc = ao  a n d  T3 = Id and  such that the  diagram

 K P 1 2  [ t ] I s i s 2jfl
P , 2 [t] - >  0

commutes.
Since /1 = Id ,  by Quillen's lemma (See, for example, [M a ] , Lemma 1.2)

/3 =  fi213 1 w ith  fi2  e Aut Ps i [ t ]  a n d  /3, c Aut /) , 2 [t ],  w ith  13, = fl2  =  I d .  Hence
(02fl2),2 = (01#1

By patching Ps , [t ]  and
 P 2 [ t ]

 v ia  the  isomorphism fi- l : Pso j t i  P . 1s2 [ ( ] , we
get a projective A [t] -module P ' .  L e t it,: P' -4 I  be th e  map got by patching

P 2 [t] 1,2 a n d  02 • P„[t] --+ / s i  a n d  l e t  112 : P[t] P ' b e  th e  m ap got by
patching 13 1 : P 2 [ t ] 1 3,2 [t ] and  132 : Ps ,[t] P,[t].

It follows that 112  is  an isomorphism and that t/f = 1/11/2: P[t] -+1 is surjective.
Since 7 =  Id  and #2  =  Id , it follows that 111s2 (0 ) = f 2 a n d  C O ) = J .  Therefore
0(0) = f . This completes the  proof of Theorem (2.3).

The following is a n  interesting extension of Theorem (2.2).

2.4. Theorem. L et A  be a regular ring, essentially  of  f inite type over a f ield
k  an d  R  A [t ] be the polynomial ring. L e t  I = I' C11" be the intersection of  two
ideals I' and I "  in  R  such that

1. I' contains a m onic polynomial,
2. I" = 1"(0)R  is a  extended reduced ideal o f  height r > 3 such that A /1"(0)

is regular,
3. / '  +  / "  =  R.
S uppose P is  a  projective A -m odule of  rank r > dim R /I' + 2  and suppose

f : P — > 1(0) and 9: P H  1 / 1 2  a r e  tw o  surjectiv e lin e ar m ap s  su c h  th at
9  modulo (t, I) f  modulo 1(0)2 .

Then there is a surjective map 11/: P[t] I such that lif ts 9 and tlf(0) = f .

Pro o f . It is essentially sim ilar to th e  proof o f (2.3) a n d  we only outline
th e  difference. We pick s i , s 2  a s  i n  (2.3). B y (2.2) there is a surjective map

P8 2 [t]I that i//,(0) = f s2. a n d  tp, lifts gas 2 . By ([Ma], Theorem (2.3)),
there is a surjective m ap 02

•
 P s ,[t] -4  Is ,  such that (//2 (0) = fs ,  a n d  0 2  l if t s  cps , .

Since A  is regular, and essentially of finite type over a field k, by Lindel's theorem
([Li]), ker (0 1 )s i  a n d  ker (0 2 ),. are extended projective modules. The rest of the
proof is sim ilar to  that o f  (2.3). To see that tit: P [t ] -+  I  lifts  yo, n o te  that
/3, Id modulo I  for i = 1 , 2.
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§ 3 .  Some addition and subtraction principles

In  th is section, w e prove the  addition  and  subtraction principles stated in
the  in troduc tion . W e  b eg in  w ith  a  key  lem m a w h ich  is  p roved  in (ERS!],
Lemma 3).

Lemma 3.1 (Non). L e t  A  be a noetherian ring w ith dim A =  n. L e t  I . g  A
be an ideal o f  height n which is generated by  n elem ents a 1 , a 2 ,  . . . ,  a n . Suppose
th at  J is  an  ideal o f  height n  in  A  such  that I + J = A . T h e n , w e can f ind a
m atrix  C belonging to E[A ] such that [a„, a 2 ,  . . . ,a n ]C T  = [c 1 ,c 2 ,...,c ,J, w here
c 1 , c 2 , c n  are  a se t o f  generators o f  I satisfy ing the following properties

1. dim A/(c 1 ,c 2 , . . . ,  c n _ ,) =  1,
2. (c i , c 2 , c n _ i )  +  J = A

W e now  prove the  following

Theorem 3.2 (Addition Principle). L et A  be a noetherian ring w ith dim A  =
n > 3. L et I, and  1 2 be tw o com ax im al ideals o f  height n in  A  such  that I, is
generated by  n elem ents. L e t  P  be a projective A -m odule of  rank  n w ith triv ial
determ inant. Suppose that there ex ists a surjectiv e map f: P —> I 2 . T h e n  th e re
also ex ists a surjective m ap g  f rom  P to  1 1 n /2 .

P ro o f . By Lemma 3.1, we may choose a  se t o f generators c 1 ,  c2 , c  of
I ,  such that

1. dim A l(c  , 2 , ,  c „_ , )  =  1
2. (c i , c2, • • • cn-i) + =  A
L e t  I' = (c 1 , e 2 . . . . . c _ 1 , t —  1), I" = 12 A [t ]  a n d  I  =  n /". The m odule

P[t]/E P[t] is  a projective m odule of trivial determ inant over th e  r in g  A [t]//'
(which has dimension 1 by (1)). By Corollary 0.4, P[t]/E P[t] is free. We choose
an  isomorphism e: P[t]/E P[t] — (A [t]/E )". Composing e w ith the surjection h:
(A [t]/I') " —> 171 2  (which sends e, to c i , 1 i  r  —  1  and en t o  t — 1), we obtain
a surjection ço = he: P[t]/EP[t] -4171 2 . Since / '(0 ) =  A , ça(0) = f  mod F(0) 2 .  By
Theorem 2.3 , w e obtain  a surjection i l ' :  I .  Specializing t/f a t  t = 1 + c n ,
we obtain a surjection from  P  to i 1 n i 2 . This completes the  proof of (3.2).

Setting 12 = A  in the above theorem, we obtain the following corollary which
was proved in ERS!]. W e  rem ark  tha t the proof of 3.2 works even when 1 2  =  A.

Corollary 3.3 ([R S 1 ], Theorem ). L e t  A  b e  a com m utative noetherian ring
w ith dim A =  n > 3. L e t  J  b e  a n  ideal o f  height n  w hich is generated by  n
elem ents. S uppose P i s  a projective A -m odule o f  ran k  n  w ith  triv ial determi-
n an t .  Suppose f u rth e r th at P  h as  a unim odular e lem ent. T hen there ex ists a
surjective m ap g  f rom  P to  J.

Corollary 3.4. L et A  be  a com m utative noetherian ring w ith dim A = n > 3.
L et I, and  12 he tw o com axim al ideals of  height n in A , which are both generated
by  n elem ents. T hen so is 1,1'112.
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Corollary 3.4 was proved in ERS!] (see ERS!] T heo rem  4 ). The two dimen-
sional analogue of Corollary 3.4 is proved in  [R S2] (see [R52] Theorem 2.3).

Theorem  3.5. L et A  be an aff ine algebra over a f ield F w ith dim A = n > 3.
Let 1 1 g  A  be a m ax im al ideal which corresponds to  a F-rational point of  Spec A.
Let 1 2  g  A  be an  ideal o f  height n w hich is com ax im al w ith I,. S uppose P is  a
projective A -module of rank  n w ith triv ial determ inant. Suppose further that there
ex ists a surjectiv e map f: P —> 1,(11 2 . T h e n  th e re  also  e x is ts  surjective m ap g
f ro m  P to  12.

P ro o f . By Lemma 3.1, we choose a  se t  o f  generators c l , e 2 , c„ o f I,
such that

1. dim A/(c i , e 2 , , c e _,) = 1,
2. (c i , c2 , cn _i ) + 1 2 = A.
L e t I' = (c 1 , c 2 , c„_,, t — c n )  a n d  I" =  / 2 A [t]. A s  in  Theorem 3.2, we

have an isomorphism e: P[t]/I'P[t]— >[A [t]/F)", and a surjection h:(A [t]/I') — >
l'/I' 2 . We therefore obtain a surjection 9  = he from P[t]/FP[t] — > l'/I' 2 . There
exists an  element k ' e GL (A /1 1 ) such  that h(0) k' 0 t(0) = f  mod 1(0) 2 =  I .  W e
have  a  map j: A [t]/T  A / 1 1 w hich sends any polynomial to  its  constant term.
Since A /I , z  F  and  A  is  an affine algebra over F , w e see easily that the  map
j '  induced by j  f ro m  GL „(A [t]/I') t o  GL„(A/I i ) i s  a  su r je c tio n . W e  lif t  k'
via  j '  t o  a n  elem ent k  be long ing  to  GL „(A [t]/1'). T he surjec tion  cp =
P H /I 'P [t] —> I'/I'2 satisfies the  property that (p(0) = f  m od If. A pplying Theo-
rem 2.3, we obtain a surjection P[t] —> I, where 1 = I' n I". Specializing 111 at
t = 1 + c n ,  w e obtain a surjection from P  to 1 2 .

I n  order to  prove the  next theorem, we need some lemmas.

L em m a 3 .6 . L e t B  be  a  f initely  generated algebra over Z  w ith dim B  = 2.
L e t J g  B  be an  ideal w hich is generated by  tw o elem ents a 1 , a 2 . L et u E B be
a unit modulo J. T hen there ex ists a matrix C E M 2 (B) with det (C) = u modulo J
such that [a l , a2]C T  =  [e l, cA  and (c 1 , c 2 ) =

P ro o f  We choose y e B  such that uy = 1 mod J. Let f: 13 3 —> J be defined
as follows: f (1, 0, 0) = 0, f (0 , 1, 0) = a„, f (0, 0, 1) = a2 . The element (y , a2 , —a 1 ) e
ker f  and is unimodular, since y is a  un it mod J. Since B  is a  finitely generated
algebra over Z with dim B  = 2, by a  theorem of Vaserstein ([Su-Va], Corollary
18.1), (y, a2 , —a 1 )  is com pletable to a  matrix

y, a2 , —a,
D = c 2 11 /112 c  SL3(B)

d 2 21 )122

Since D E SL 3 (B), the rows of D  generate 13', therefore the elements f(v, a 2 , — a1 ),
f ( c ,1 ,  2 1 2 ), f (d, 2 2 1 , 2 2 2 )  generate J. Hence th e  elements d, = A n a, + 2 1 2 a2

A Aand d 2 =  22 1 a 1 +  2 2 2 a 2  generate J. The matrix C =  ( l l 12) satisfies the re-
4 '21 A 22

quired properties.
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Before we state the next remark, we need a  well known lemma whose proof
is included for completeness.

Lemma 3 .7 .  L et A  be a commutative ring w ith 2  invertible in  A . L et u  e  A
be  a u n it, su c h  th at u  is  a square m odulo the n il rad ic al o f  A . T h e n  u  is  a
square in A .

P ro o f . L et u + A  = w2 , w here  A E A  is  n ilp o te n t. Then, u(1 + ).u - 1 ) = w2 .
Since Au- 1  is n ilpo ten t a n d  e  A , 1 + Ati - 1  = y 2 ,  for some y  e A  which is a unit
(cf. [L a], L em m a 2.5, C hapter 6). Thus u = (wy - 1 )2 .

Remark 3.8. A ll th a t is  u sed  in  th e  proof o f 3 .6  is  th a t  the unimodular
row (y, a2 , a 1 ) is com pletable. This is true (by the Swan-Towber, Suslin Theo-
rem) if y  is  a  square mod (a1 , a 2 ). This w ill be so  if either
a) A /(a,, a 2 )  is  a  product of quadratically closed fields or
b) if  A  is  an affine algebra over a  fie ld  F , Char F 0  2  and A / / ( a 1 , a2 )  i s  a

product of quadratically closed fields (using Lemma 3.7).

Using Remark 3.8 and the proof of Lemma 3.6 one can prove the following.

Lemma 3 .9 .  L e t  B  b e  an af f ine  algebra ov er a  f i e l d  F .  L e t  J  B  be
an  ideal w hich is generated by  tw o elem ents a 1 , a 2 , satisfy ing the  property  that
dim B /J = O. L et u e B  be a unit m odulo J. A ssume either that
a) Char F  2 , B1.\ / .7  is  a  product of  quadratically  closed f ields or
b) Char F = 2, k J  i s  a  product of  quadratically  closed fields.
T h e n  th e re  e x is ts  a  m atrix  C  e M 2 (B ) , w ith  det C = u modulo J s u c h  th a t
[a„, a 2

]C T  = [c 1 ,  c ]  and (c 1 , c 2 ) = J.

W e now prove a  higher dimensional analogue of Lemma 3.6.

Lemma 3 .1 0 . L e t A  be  a  f initely  generated algebra ov er Z  w ith dim A  =
n > 2. L e t  J  B  b e  a n  ideal o f  height n w hich is generated by  n elem ents
a1 , a 2 , a „ .  Suppose u e A  is  a u n it modulo J. T h e n  th e re  e x is ts  a  matrix
Ce M n (A) with det (C) = u modulo J, such that [a 1 , a2 , an ]C T  = [c 1 , e 2 , cn ]
and (c 1 , c2 , c„) = J.

P ro o f . By multiplying th e  vector [a 1 , a2 , , an ]  b y  a n  elementary matrix
and  using standard stability argum ents ([La], Lemma 3.4, Chapter 3) we may
assume that the a 1 , a2 , , an  satisfy the property that dim A /(a a 2 , an _2 ) = 2.
(N ote that w e use  the  fac t tha t a n  elem entary m atrix has determ inant 1). Let
B = A /(a i , a2 , a„_ 2 ). L et bar denote reduction m odulo the ideal (a1 , a2 ,
a„_ 2 ). By Lemma 3.6, one can choose a  matrix D e M 2 (B) such that

1. det (D) = u modulo J,
2. If [a ,,1 ,  (71JD T V n - 1 , th en  a 1 ,  a 2 , a„_ 2,

 c , , _ 1 ,
 c n  genera te  J.

O ne se ts  c, = a 1 , c 2 = a 2 , c 2 = a n _2 a n d  verifies easily that c l ,
c2 , c„ satisfy th e  required properties.

Similarly, one can prove the following higher dimensional analogue of 3.10.
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Lemma 3 .1 1 .  L et A  be an aff ine algebra over a f ie ld  F with dim A  = n > 2.
L e t  J  A  be an  ideal o f  height n w hich is generated by  n elem ents a 1 , a 2 ,
an . L et u e A  be  such  that u  is a un it modulo J. A ssume that either

1. Char F 0  2 , A f i l  is  a  product of  quadratically  closed f ields or
2. Char F = 2 , A /J is  a  product of  quadratically  closed fields.

Then there ex ists a  m atrix  C e M n [A ] w ith det (C) =  u modulo J  such [a 1 , a2 ,
an ]C r  = [c 1 , c2 , , c„] and (c 1 , c2 , , c )  = J.

We summarize the  results from 3.6 to 3.11 fo r later use  as follows.

Corollary 3 .1 2 . L e t A  be  a notherian ring w ith dim A = n. L e t  J  OE A  be
an  ideal o f  height n, w hich is genrated by  n elem ents. A ssume th at J/J 2 i s  a
f ree A /J m odule of  rank  n.

Further assume that either
1. A  is  a  f initely  generated algebra over Z,
2. A  is an aff ine algebra over a f ield  F (Char F 0  2) and il/.\ [1  is a  product

of  quadratically  closed f ields or
3. A  is  an af f ine algebra over a  f ie ld  F, Char F = 2  an d  A /J is  a  product

of  quadratically  closed fields
Let h: A /J -+ A nJ/J 2 b e  an y  isom orphism . T hen there ex ists a se t  o f  generators
C1 , C 2 , . . .  C „  o f  J  such that h(1) = A  E 2  A  •  "  A  c„ (bar denotes reduction
modulo J).

P ro o f . W e choose any set of generators a1 ,  a 2 ,  . . . ,  an  o f  J. W e see that
h(1) = d2••• A an ) where u c A is a  unit mod J .  By 3.6, 3.9, 3.10 and 3.11,
Ft(J, A  ' • • A  a „ )  = A  ' • A  C „ for some set of generators c 1 ,  c2 , c„ of J.

Remark 3 .1 3 . T h e  c 1 , c 2 , c„ in  Corollary 3.12 a re  n o t  un ique . F o r
example one can choose any c 1 , c„ which satisfy th e  requirements of 3.12
a n d  multiply th e  vector [c„, c „] b y  a  m atrix  o f  determ inant 1, to obtain
another se t o f generators of J  satisfying the  required property.

We now prove the subtraction principle that was stated in the introduction.

Theorem 3 .1 4 .  L et A  be a neotherian ring w ith dim A  =  n  >  3 . L et I ,  and
12 be tw o com ax im al ideals of  height n in A . A ssum e further that I ,  is generated
by  n elem ents an d  that I i / I ?  i s  a  f re e  A/11 m o d u le  o f  ra n k  n .  L e t  P  b e  a
projective A -m odule of  ran k  n  and  hav ing triv ial determ inant. Suppose th at f :
P n r, is  a surjec tiv e  m ap. T hen there ex ists a surjection g: P — > 1 2  in the
following cases

1. A  is  a  f initely  generated algebra over Z,
2. A  is an af f ine algebra over a f ield F, char F 0  2  and A /\/ 71 , is a  product

of  quadratically  closed fields.
3. A  is  an af f ine algebra over a f ie ld  F, char F = 2  and is a  product

of  quadratically  closed f ields.

P ro o f . We choose an  isomorphism i: A —> A " P .  Let f  =  f  A /I,: P/I,P
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W e then have the following isomorphisms

A ll, AnI3 II 1 P An li/I?

Let f ,  = By Corollary 3.12, there exist a  se t o f  generators c 1 , c 2 ,
cn  o f  I ,  such that f,(1) =  ' e l  A  C2 • " A  Fn (w here b a r  denotes reduction modulo
Ii). Further, by  m ultip ly ing the vector [c 1 , c 2 . . . . . c ]  b y  an  elementary matrix,
one m ay assume by Lemma 3.1 and  Remark 3.13 that

1. dim Al(c i , c 2 , c„_,) = 1
2. (c l , c2 , , c„_,) +  /2  =  A

L e t  I' = (c 1 , c 2 , , cn _,, t + c a ), I "  =  I 2 A  [a  a n d  I  =  fl I". W e  c h o o se  an
isom orphism  t: PP - P I T H  ( A [ t ] l l ') " ,  such  that A ne(i(1)) =  e l  A  e 2 » • A e„.
We can choose such an isomorphism t by choosing any isomorphism and altering
i t  b y  a  suitable automorphism of (A [t]/ I').  C o m p o sin g  t  w ith  the surjection
h: (A[t]/I')" —0 I' /I' 2  which sends e, to  c1, 1 < i < n —  1 and en  t o  t + c n , we obtain
a surjection (,9' = P [t ]I l l [ t ]  to  /7 /' 2 . There exists an  element k ' E GL(A /I i )
such that h(0) o k' o ( (0) f  m o d  I .  F r o m  th e  w a y  w e  have  chosen various
isomorphisms it follows (using exterior powers), that k' E SL(A /1 1 ). W e have a
map j: A [t]/I' — * A /I, which sends any polynomial to  i ts  constan t te rm . Since
A /I, is sem i local, S L „(A II,)= E n (A ll,) a n d  w e can lift k ' via j  t o  a n  element
k E S L „(A [t]/I'). The surjection cp = hk4: P[t]/I'P[t]—■ I'/I' 2 sa tisfies th e  prop-
erty that c,9(0) = f  m od I. B y Theorem  2.3 there exists a surjection 0: P H  I .
Specializing 0 at t = 1 —  c n ,  w e obtain a surjection g: P 12 .

E xam ple 3 .15. L e t A  =  R[X , Y , Z]/(X 2 ± y 2  ±  z 2  1) b e  th e  coordinate
ring of the real tw o sphere. Let P = A 3 /(x, y, z). We define a surjection f  from
P to  the ideal generated by y  and z  in  A  as follows: f ( e ,) = 0, f (e 2 ) = z , f (e 3 ) =
— y. It is know n from  topology that P  is  n o t free (i.e. there does not exist a
surjection from  P  t o  A ) .  This example shows that Theorem  3.14 is not valid
(when /2  =  A ) i f  w e  d o  n o t  assume tha t e ithe r o f the  cond itions 1 , 2 , o r  3
h o ld . O n e  can similarly construct examples i n  higher dimensions using even
dimensional spheres.

Corollary 3.16 ([M K], Theorem 2). L et A  be a  reduced af f ine algebra over
an algebraically closed fi eld F or a f initely  generated algebra over Z with dim A  =
n. L e t  I ,  and  / 2  be tw o com ax im al ideals o f  he igh t n  in  A , w hich are local
complete intersections. Suppose I ,  and I, n 12  a re  both generated by n elements.
T hen so is 12.

Rem ark 3.17. One expects Corollary 3.16 to be true when A  is any noethe-
rian ring of dimension n. We refer to the last section for results in this direction.

§ 4 .  Projective modules over real quadric hypersurfaces

I n  th is  section, w e apply  the  add ition  and  subtraction principles that we
have proved to answer the  following question.
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Q U E STIO N : Let A  be the coordinate ring of a real quadric hypersurface with
dim A = n. L et P  b e  a projective A-module of rank  n . W hen  does P  have a
unimodular element?

L e t A  = R [X ,, X 2 , ..., X  n + ,1/(E7:i
l  a 1X7 — b) where ai , b  E R .  L et P  b e  a

projective A-module of ra n k  n. W e w an t to  say  w hen  P  h a s  a unimodular
e lem ent. The case n  = 1  is classical.

The case n = 2  is also understood in  view of results of M urthy (cf. [SW2],
Corollary 16.2).

W e consider the  case  n > 2. W e first restate th e  subtraction principle in
the form  that it w ill be used in  this section.

Theorem 4.1. L et A  be an affine algebra over R with dim A  = n . L e t I ,  g  A
be  a m ax im al ideal o f  height n w hich is generated by  n elem ents and 12 be  an
ideal o f  height n in  A  w hich is the intersection of  f initely  m any  maximal ideals.
Assume further that 1 1 +  12 = A . L e t  P  be a projective A -module of rank n having
triv ial determ inant. Suppose that there is a surjection f : P 1 ,  ( 1  12. Then there
also ex ists a surjection g: P 1 2 .

P ro o f . The residue field A /I, is isomorphic is R  o r  C .  The Theorem now
follows from Theorem 3.5 and  Theorem 3.14.

The following lemma was proved by Swan (cf. [SW3], Lemma 6.2) in the
case where A  is the coordinate ring of the rea l 2  sphere . The proof we give is
the same.

Lemma 4.2. L et A  = R [X 1 , X 2 , ..., X  ,]/(E7:i
1 a1X7 — b) be as abov e . Let

m  A  be a maximal ideal such that A /m  C .  Then in is generated by n elements.

P ro o f . L et f: A —> C  b e  a surjective homomorphism such that ker f  =  m.
We assume without loss of generality that .f (x ,) e C — R .  Let c 2 , c,, . ,  en+1 R
be chosen so that f (x , + c 2 x 1 ), f (x , + c 3 x 1 ), f ( x n + ,  +  c n + i x i )  belong to  R.
Let f (x , + c i x ,) = di . Then the elements x ; +  ci x , — d i , 2 <  i < n  + 1, are in the
kernel o f f. These elements generate th e  kernel, fo r , if  w e  go  m odulo  these
elements in  A , w e obtain a  two dimensional vector space over R .  Now, com-
paring dimensions, we see that these elements generate m = ker f.

Lemma 4 .3 .  L et A  = R [X ,, X 2 , ..., X  n + ,]/(E7If
i
l  a i X7 — b) be as above (where

n > 2). T hen Pic A = O.

Pro o f . If b = 0, then A  is graded and hence Pic A = 0 by ([Mu 1], Lemma
5.1). If  b 0, Pic A  = 0  by ([SW2], Theorem 9.2).

W e now answer the question stated in  th e  beginning of the section. The
first two examples are due to M urthy. H ow ever the proofs we give are different
(cf. [Mu2], Examples 3.10).

Exam ple 1 ( M u r t h y ) .  L e t A  =  R [X ,, X  . . .  X  n + 1]/ ( 7=
+ X  i

2  +  1), n  >  2.
Then any projective A-module of rank n  has a unim odular element.
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P r o o f .  Let P be a projective A-module with rank P  = n .  By Swan's Bertini
Theorem ([SW 1], Theorem 1.3, 1.4), we can choose a surjection s: P I ,  where
I OE A  is the intersection of finitely many maximal ideals m i . B y  L em m a 4 .3 , P
has trivial determ inant. S ince A/m i C , b y  L e m m a  4 .2 , mi is  g e n ra te d  b y  n
elements. Applying Theorem 4.1 repeatedly, we see that there exists a surjection
s: P —> A .  Therefore P  has a unim odular element.

Exam ple 2. Let A = REX 1 , X 2 , ..., X „,j1 C V n > 2. L e t  P be a  pro-
jective A-module of ra n k  n . T h e n  P  has a unim odular element.

P r o o f .  The proof is sim ilar to that of Exam ple 1. W e choose a surjection
s: P I ,  such that I  = f l1  rn ,  w here A/m i C  f o r  a ll i. We can choose such
a surjection by Swan's Bertini theorem, since A has only one real maximal ideal.

We thank Non i  for pointing out the following exam ple. It is due to  Barge
and O janguren ([B 0]) when n = 2.

Exam ple 3. Let A  = R[X  1 , X 2 , ,  X „ 4.1 ]/(E7=
1 - ,1 X -  1), n > 2. Let X  = S"

(the n  sphere). L e t P  b e  a projective A -m odule of ra n k  n. T hen  P  h a s  a
unimodular element if  and  only if P C ( X )  has a unim odular element (where
C(X ) is  the ring of real valued continuous functions o n  X).

P r o o f  I f  P  h a s  a  u n im o d u la r  e lem ent, then clearly  P C(X ) h a s  a
unimodular e lem en t. Suppose conversely that P ()A  C (X ) h a s  a unim odular
elem ent. Then, one can  show  using Bertini arguments (a s  is  done  in [RS3]),
that there exists a surjection s: P I  with I  = (-)‘ m i ,

 A/m i C  f o r  all i. Now
proceeding a s  in  Example 1, we see that P  has a unim odular element.

E xam p le  4 . L e t  A  = R EX 1 , X 2 , ..., X i i + J A X I X 2 a1X 7) o r  A  =
R[X i , X 2 , ..., X „, j/(X ,X 2 + E 'iL la i X7 — b) where b O. Let P be a projective
A-module with rank P  = n . Then P  has a unim odular element.

P r o o f  W e  o n ly  p ro v e  th e  c a se  w hen A  = R [X 1 , X 2 , ..., X n + ,]/(X , X 2  ±

Er-1 a1X i
2 ). T h e  o ther case  i s  similar. W e first show  th a t  a ll  r e a l maximal

ideals of A which lie outside a  closed set Y such that dim Y = n — 1 are generated
b y  n  elem ents. L e t Y  =  V(X I X 2 ). Let i n  A  b e  s u c h  th a t  X ,X 2 i n  a n d
A/m z  R .  Then m = (X , — 2 1 , X 2  - 2 2 , . . . , -211+ 1), where A, e R  and 2 1
0, 2 2  0 O. If we go modulo X 3  -  2 3 ,  ..., X „+ 1  - 2 „+ 1  in A, we obtain a principal
ideal d o m a in . Hence after going modulo these n — 1 elements, the image WI of
in is  p rinc ipa l. Hence m is generated by n elements. By Swan's Bertini theorem,
we can choose a surjection s: P I  such that I  = f l 1  m i, and none of the  in
contains X i  X2 . N ow  using  T heorem  4 .1  and  proceeding a s  in  example 1, we
see that P  has a unim odular element.

§ 5 .  Subtraction principles and sections of stably free modules

The aim  of this section is to  prove the  following:

Theorem 5.1. L et A  h e  a  noetherian r in g  s u ch  th a t  dim A  = n  i s  e v e n .  Let
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1 , and 1 2  be tw o com ax im al ideals o f  height n in  A  such that 1,/1? (respectively
12 /I 2 )  is  a f re e  A /I, (respectively A /1 2 )  m odule of  ran k  n .  Suppose that I, and
I, n12 are  generated by  n elem ents. T hen there ex ists a surjection f rom  a  stably
free A -module P of  rank  n onto

In  order to prove this theorem , w e need a  varian t o f Theorem 2.3 whose
proof is the  same a s  th a t of Theorem 2.3.

T h eo rem  5 .2 . L e t  A  b e  a  com m utative noetherian ring  and  R  = A [t].
Suppose I = I' n r  i s  the intersection of  tw o ideals I' an d  r in  R  such that

1. I ' contains a monic polynomial,
2. I" = 1"(0)R  is  an  extended ideal,
3. / '  +  / "  =  R.

S uppose P is  a  projective A -module of  rank r dim R /I + 2  and f: P — > 1(0), 9:
P[t]/IP[t] I / I 2  a r e  tw o surjectiv e linear m aps, such that 9(0) = f  mod 1(0) 2 .
T hen there is a surjective map P[t] — I su c h  th at  0 (0 )  = f .

W e now  turn  to  the  proof of Theorem 5.1.

Proof  o f  Theorem 5. L W e  o n ly  p ro v e  the case n = 4  so  tha t the notation
is  s im ple . T he  proof in  th e  general case is  sim ila r .  By Lemma 3.1, we may
choose a  se t o f generators c 1 ,  c2 , c 3 ,  c4  o f  / ,  such that
a) dim A/(c i , c 2 , c 3 ) = 1.
b) (c i , c2 , c 3 ) + 12  =  A

Let I  = (c 1 , e2 , c 3 , t — c4 ) n /2 A [t ].  W e note that 1(0) = 1, n12 . We choose
a s  usual a surjection h[t]: (A[t]/ 1) 4  —> 1/12 . Specializing at t = 0 , w e  ob ta in  a
surjection h(0): (A/ I(0))4(0))4  —> /(0)//(0) 2 . We choose any set of generators d„, d2 , d 3 ,
d4  o f  1(0) = / 1 n12 . Taking exterior powers, we obtain a n  isomorphism

A4 h(0): A/1(0) A4 1(0)//(0) 2 .

Let A 4 h(0) send e , A  e2 A  e3  A  e4  t o  f)(d i  A  d2 A  d3 A  d4 ) (bar denotes reduction
modulo 1 (0)), w here  ye  A  is such that F) e A /I(0) i s  a  u n i t .  W e choose  an
element u e A  such that uv =  1 m od 1(0). L e t  P = /1 5 /(u, d„, d 2 , d 3 , d4 ). Since
uv = 1 mod 1(0), there exist 22, 23, 24 e A  such that

uv + 2 1d 1 +  22d2 2 3 d 3  2 4 4  —  1 .

There is a surjection f: P —> 1(0) which sends e ,  to  0 , e2  t o  —d l , e 3  t o  d 2 ,  e4

t o  —d3 ,  e ,  to  d4 . (It is here  that the assum ption that n  is even is used. The
rest of the proof will use the fact that n is even). It is easy to verify the element

w — ve 2  A  e3 A  e4  A  e5 +  2 1 e3 A  e4  A  e5 A  e, + 2 2 e4  A  e5 A  e , A  e2 + •

generates / O P .  L et i: A —> /O P be  the  isomorphism which sends 1 to w .  We
have the following sequence of maps

A/1(0) 1> A 4 13 /1(0)P - A 4 1(0)//(0) 2

A 4 f  o  i(1)= td i A  d2 A  d3 A  d4
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We choose a n  isomorphism P[t]/JP[t] —> (A[t]11) 4  such  that

A4 ((i(1))= e , A  e2 A  e3  A  e4 .

W e can d o  so by choosing any isomorphism a n d  then  a ltering  it by  a n  auto-
morphism of (A[t]11) 4 . The map (,9' = he is  a surjection P[t]/1P[t] —> 111 2 . By
the choice of our isomorphisms it follows (using exterior powers) that there exists
k' E SL„(A1I(0)) such that

h(0) 0 k' o  /(0) = f  mod 1(0) 2

W e have a surjection j: A[t]ll —> A11(0), which sends any polynomial to its con-
stant coefficient. We lift k ' via j  to  an element k e S L „(A [t]11). W e can do  this
as SL(A//(0)) = En (A11(0)) (note that A //(0) is sem ilocal). The surjection cp =
hkeY : P[t]lIP[t]—> 111 2 sa tisfie s  th e  property that cp(0) = f  mod 1(0) 2 . A pp ly ing
Theorem 5.2, we obtain a surjection 141: P[t] —> I. Specializing 0 at t  = 1 + c„,
we obtain a surjection from  P t o  / 2 , with P  stably free of rank n.
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