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Let A be a commutative noetherian ring, containing a field k, 
with 1/2 ∈ k, dimA = d, and let P be a projective A-module, 
with rank(P ) = n. Let LO(P ) denote the set of all pairs 
(I, ω), where I is an ideal of A and ω : P � I/I2 is a 
surjective map. The homotopy relations on LO(P ), induced 
by LO(P [T ]), leads to a set π0 (LO(P )) of equivalence classes 
in LO(P ). There are two distinguished elements e0, e1 ∈
π0 (LO(P )), respectively, the images of (0, 0) and (A, 0). 
Define the obstruction class

ε(P ) = e0 ∈ π0 (LO(P )) ,

to be called the (Nori) homotopy class of P . The following 
results are under suitable smoothness or regularity hypotheses. 
We prove, if 2n ≥ d + 2, then π0 (LO(P )) has a natural 
structure of a monoid, which is a group if P ∼= Q ⊕A. When 
2n ≥ d + 3, we prove

P ∼= Q⊕A ⇐⇒ ε(P ) = e1 (“the additive zero”).

Further, we give a definition of a Euler class group E(P ). 
Under suitable smoothness hypotheses, we prove, if P ∼= Q ⊕A
and 2n ≥ d + 3, then there is natural isomorphism E(P ) ∼−→
π0 (LO(P )) of groups.
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1. Introduction

Throughout this article, unless further qualifications are added, A will denote a 
noetherian commutative ring, with dimA = d. Also, P will denote a projective A-module 
with rank(P ) = n.

This article is a continuation of the study of Homotopy obstructions of projective 
modules, that was started in [15]. It was pointed out in [15] that, the study of the 
Homotopy obstructions of projective modules, evolved out of some germs of ideas, in 
two components, given by Madhav V. Nori (around 1990), through some verbal and 
informal communications, and was referred to as the “Homotopy Program”. The readers 
would be very well advised to familiarize themselves with the introduction of [MM]. We 
would try to avoid any repetition, and pick up from where we left in [15]. We make 
additional introductory comments here only to reestablish the context. One of the two 
components of these germs, was the Homotopy Question. The following is a statement 
of the same from [13], which would almost certainly be an adaptation by the respective 
author [13], of the more precise formulation communicated by Nori.

Question 1.1 (Homotopy Question). Suppose X = Spec (A) is a smooth affine variety, 
with dimX = d. Let P be a projective A-module of rank n and f0 : P � I be a surjective 
homomorphism, onto an ideal I of A. Assume Y = V (I) is smooth with dimY = d − n. 
Also suppose Z = V (J) ⊆ Spec (A[T ]) = X × A1 is a smooth subscheme, such that Z
intersects X × 0 transversally in Y × 0. Now, suppose that ϕ : P [T ] � J

J2 is a surjective 
map such that ϕ|T=0 = f0 ⊗ A

I . Then the question is, whether there is a surjective map 
F : P [T ] � J such that (i) F|T=0 = f0 and (ii) F|Z = ϕ. Assume 2n ≥ d + 3.

The statement of Question 1.1, is a simple translation of the theorem of Nori [13, 
§3 Appendix], on smooth vector bundles V over smooth manifolds M , using a vector 
bundle to projective module dictionary. The Question 1.1, as stated, would fail to have 
an affirmative answer, without the regularity hypothesis [5, Example 6.4]. Even when A
is regular, without the condition 2n ≥ d + 3, the question would not have an affirmative 
answer (see [5, Example 3.15]). However, existing results (see [13,5,3]) indicate that with 
suitable hypotheses the regularity and/or transversality hypotheses may be spared. Up 
to date, the best affirmative result (assumes 2n ≥ d + 3) on (1.1) is due to Bhatwadekar 
and Keshari [3], preceded by [21,13,20,5].

While the Homotopy Question (1.1) always had the flavor of being central to the 
Homotopy Program, it was never articulated as such. In fact, it was never well understood 
by the researchers how or why so? This article clarifies and establishes the centrality of 
the Homotopy Question (1.1). The other half of these two pillars in this program is 
the definitions of Euler class groups. Followed by the outline given by Nori, for integers 
0 ≤ n ≤ d and line bundles L, definitions of Euler class groups En(A, L) were given 
in [7,6,18]. In fact, Nori originally outlined a definition of Ed(A, A), when A is smooth 
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(see [21]). For any projective A-module P , with rank(P ) = d, an Euler class e(P ) ∈
Ed(A, ∧dP ) was defined and it was proved [7] that

e(P ) = 0 ⇐⇒ P ∼= Q⊕A.

When rank(P ) ≤ d − 1, a desire to define a similar obstruction class e(P ), in some 
appropriate obstruction group or set seemed too ambitious. We accomplish this goal, 
under additional conditions (see Corollary 4.6), by understanding the implicit Homotopy 
relations in the statement of the Homotopy Question 1.1. We introduce the following 
notations:⎧⎪⎨⎪⎩

LO(P ) =
{
(I, ω) : ω : P � I

I2 , is a surjective map, where I is an ideal
}

LOn(P ) = {(I, ω) ∈ LO(P ) : height(I) = n}
LOn

c (P ) = {(I, ω) ∈ LO(P ) : height(I) = n, and V (I) is connected}

There is a (chain) homotopy relation ingrained in the statement of (1.1), by substitut-
ing T = 0, 1, on the set LO(P ). The set of equivalence classes would be denoted by 
π0 (LO(P )). In LO(P ), there are two distinguished elements (0, 0), (A, 0) ∈ LO(P ), and 
their images in π0 (LO(P )) are denoted, respectively, by e0 and e1. Define the obstruction 
class

ε(P ) := e0 ∈ π0 (LO(P )) , (1)

to be called the (Nori) Homotopy class of P . We give a summary of the main results in 
this article, before making further introductory remarks. Let A and P be as above.

1. (See Corollary 4.6.) Suppose A is essentially smooth, over an infinite perfect field k. 
Assume 2n ≥ d + 3, with 1/2 ∈ k. Then, we prove

P ∼= Q⊕A ⇐⇒ ε(P ) = e1 (“the additive zero”; see (3)).

2. (See Theorem 4.3.) Suppose A is essentially smooth, over an infinite perfect field k, 
with 1/2 ∈ k. Assume 2n ≥ d + 3. Let (I, ω) ∈ LOn(P ) and let [(I, ω)] ∈ π0(LO(P ))
be its image. Then, ω : P � I

I2 lifts

to a surjective map Ω : P � I ⇐⇒ ε(P ) = [(I, ω)] ∈ π0(LO(P )).

3. (See Theorem 6.5.) Assume A is a regular ring, containing a field k, with 1/2 ∈ k. 
Assume 2n ≥ d + 2. Then, we prove that π0(LO(P )) has a natural structure of 
an abelian monoid. In this additive structure, e1 ∈ π0(LO(P )) is the identity. For 
(I, ω1), (J, ω2) ∈ LOn(P ), if I + J = A, the sum in π0(LO(P )) is given by

[(I, ω1)] + [(J, ω2)] = [(IJ, ω1 � ω2)]
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where ω1 � ω2 : P � IJ
(IJ)2 is obtained by combining ω1 and ω2, using Chinese 

remainder theorem.
Further, if P = Q ⊕A, then e0 = e1 and π0(LO(P )) has a structure of a group.

4. To further establish centrality of the Homotopy Question (1.1) in this program, define 
Euler class group

E(P ) := Z(LOn
c (P ))

R(P )

where R(P ) ⊆ Z(LO(P )) is the subgroup generated by the global orientations, 
namely, those (I, ω) ∈ LOn(P ) such that, ω lifts to a surjective map P � I (here 
(I, ω) is considered as an element in Z(LOn

c (P )), by decomposing I in to connected 
components).
(a) (See Definition 7.2.) Assume A is a regular ring, containing a field k, with 1/2 ∈ k. 

Assume 2n ≥ d + 2 and P = Q ⊕ A. Then, we prove that there is a natural 
surjective group homomorphism

ϕ : E(P ) � π0 (LO(P ))

(b) (See Theorem 7.3.) Further, assume A is essentially smooth over an infinite 
perfect field k and 1/2 ∈ k. If 2n ≥ d +3, then we prove that the homomorphism 
ϕ is an isomorphism.

(c) (See Theorem 7.6.) Assume A is a noetherian commutative ring (without any 
regularity hypothesis), P = Q ⊕A and 2n ≥ d +3. Let (I, ω) ∈ LOn(P ). Assume 
its image

(I, ω) = 0 ∈ E(P ).

Then, ω lifts to a surjective map Ω : P � I.
(d) (Corollary 7.9.) In Section 7.2, we exploit the work of N. Mohan Kumar and 

M.P. Murthy [25,24], when the base field k is algebraically closed, and P ∼= Q ⊕A, 
with rank(P ) = n = d. If A is smooth and 1/2 ∈ k, we prove π0 (LO(P )) ∼=
CHd(A), where CHd(A) denotes the Chow group of zero cycles.

The desire to define an obstruction class, for P to split off a free direct summand, is 
age old and might have been considered too bold. However, we are able to give such 
a definition (1) of an obstruction class ε(P ), and the result in item 1 (Corollary 4.6) 
establishes the splitting property. The result in item 2 (Theorem 4.3) was the main 
objective of the Homotopy Question (1.1), in such a homotopy obstruction theory set 
up. The structure of π0 (LO(P )) has been an open problem since the inception of the 
Homotopy Program, while the exact nature of the structure to expect was not clear. In 
item 3 (Theorem 6.5) we settle this issue, by proving that the homotopy obstruction set 
π0 (LO(P )) has structure of a monoid. The definition, in item 4, of Euler class group 
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E(P ) is new. In deed, for a line bundle L, E(L ⊕ An−1) coincides with En(A, L), as 
defined in [7,6,18]. Further, under suitable smoothness conditions, the results in item 4
(see §7 for more details), establish a relationship, as in (4a), (4b), between homotopy 
obstructions π0 (LO(P )) and the Euler class group E(P ), which ties together the two 
components of the germs of ideas originally given by Nori (around 1990). When n = d, 
k is algebraically closed, P = Q ⊕ A, under suitable other conditions, we establish that 
π0 (LO(P )) coincides with the Chow group CHd(A) of zero cycles.

While we described our results above, in terms of π0 (LO(P )), there are three other 
descriptions of π0 (LO(P )) available in §2. We use these descriptions of π0 (LO(P ))
interchangeably. Consider the notations:

⎧⎪⎨⎪⎩
Q(P ) = {(f, s) ∈ P ∗ ⊕A : s(1 − s) ∈ f(P )}
Q̃(P ) = {(f, p, s) ∈ P ∗ ⊕ P ⊕A : f(p) + s(s− 1) = 0}
Q̃′(P ) = {(f, p, z) ∈ P ∗ ⊕ P ⊕A : f(p) + z2 = 1}

Given a polynomial extension A ↪→ A[T ], substituting T = 0, 1, we have two set theoretic 
maps, in each case

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Q(P ) Q(P [T ]) T=1T=0 Q(P )

Q̃(P ) Q̃(P [T ]) T=1T=0 Q̃(P )

Q̃′(P ) Q̃′(P [T ]) T=1T=0 Q̃′(P )

These lead to chain homotopy relations and accordingly, π0 (Q(P )), π0

(
Q̃(P )

)
, 

π0

(
Q̃′(P )

)
are defined. If and when 1/2 ∈ A (which we often assume), there is a 

bijection

Q̃(P ) ∼−→ Q̃′(P ), which induces a bijection π0

(
Q̃(P )

)
∼−→ π0

(
Q̃′(P )

)
.

In Section 2, we establish the following commutative diagram of natural bijections:

π0

(
Q̃(P )

)
ν

∼

η �

π0 (Q(P ))

η′

∼

π0 (LO(P ))

We comment on the use of the phrase “Homotopy Program”. Perhaps, the phrase was 
first used by Mandal, in a conversation with Nori to describe this whole set of problems. 
Among what were encapsulated in the program are the following:
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1. (Part 1) A coherent theory of obstructions, based on homotopy was expected. It 
was also expected that these homotopy obstructions would come together with the 
concept of Euler class groups.

2. (Part 2) The theory should reconcile with the A1-homotopy approach (also known 
as Motivic or Chow-Witt group approach [2,23]).

3. (Part 3) When A is a real smooth affine algebra, this algebraic homotopy obstruction 
theory should also reconcile with the Topological counter part, in the sense analogous 
to [17].

Results in this article addresses Part 1 of this program, in a comprehensive manner. In 
deed, a coherent theory of homotopy obstructions is established, as was expected. Note 
that the theory is not expected to behave too well for the lower half of the range of 
n = rank(P ). When P is not free, the definition of the Euler class group E(P ) is new, 
which was needed to bring the two components of the Homotopy Program together. 
The destination of the road map that emerged out of the introduction of the Homotopy 
Question (1.1) was not very well understood. This article clarifies and brings us to that 
destination. This completes the Part 1 of the program. This was accomplished entirely 
by the methods of commutative algebra, which was possible due to the strength of the 
Homotopy Question.

In a sense, Part 2 of the program was resolved in [1,15] fairly satisfactorily, by set-
tling the problem of Fabien Morel [23, pp. 13] affirmatively. It was established that, 
under suitable regularity conditions, C̃H

d
(A) ∼= π0

(
Q̃(Ad)

)
, where C̃H

n
(A) denotes 

the Chow-Witt group of A, for n ≥ 2, introduced in [2].
For clarity, let us specify that, for integers n ≥ 2, four invariants of A has been dis-

cussed as obstruction houses. Namely, they are the Euler class groups En(A, A), the 

(naive) homotopy groups π0

(
Q̃(An)

)
, the A1-homotopy groups and the Chow-Witt 

groups C̃H
n
(A). For our purpose, π0

(
Q̃(An)

)
coincides with A1-homotopy groups (see 

[23, Remark 8.10]). We avoid discussions on complexities of various comparison theorems 
between naive homotopy and Chow-Witt groups [23,1]. However, for each projective 
A-module P , this article introduces two more invariants of P , namely the (Nori) Homo-
topy monoid π0 (LO(P )) ∼= π0

(
Q̃(P )

)
and the Euler class group E(P ). Newer questions 

(A.6) have been raised, what would be an appropriate A1-homotopy or Chow-Witt inter-
pretations for π0

(
Q̃(P )

)
, analogous to the original question of Morel [23, p. 13]. While 

such an A1-homotopy interpretation would be of its own interest, this may become useful 
for further study of the structure of these monoids π0

(
Q̃(P )

)
, like finite generation and 

others. The Part 3 of the program would have to be addressed subsequently. It appears, 
there is no well formulated or well studied topological counter part to these monoids 
π0 (LO(P )), in the literature.

We contrast Euler class groups E(An) = En(A, A), Chow Witt groups C̃H
n
(A), and 

Homotopy obstructions π0 (LO(P )), along with the history. The goal, indeed a desire, 
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that eventually emerged out of the introduction of the Homotopy Question (1.1), along 
with the definition of En(A, A) = E(An), was to define an obstruction class ε(P ) in a 
suitable obstruction set (desirably a group), for P to split off a free direct summand. 
However, the study of Euler class groups E(An) stole most of the attention, while the 
study of the implications of the Homotopy Question (1.1) was largely left ignored. The 
A1-Homotopy approach to Euler class groups emerged out of the introduction of Chow-
Witt groups C̃H

n
(A) in 2000 [2], followed by the book of Fabien Morel [23], in 2012. 

Morel defined a surjective map En(A, A) � C̃H
n
(A), and indicated that this map could 

be an isomorphism [23, pp. 13], when n = dimA. Morel did not indicate that some 
variation of his A1-Homotopy approach, may lead to a definition of an obstruction class 
ε(P ), to split off a free direct summand. Both E(An) and C̃H

n
(A) are invariants of A. 

They are not precise enough to house such an obstruction class ε(P ). Even the Euler 
class groups E(P ) defined in this article (4) are not large enough to house such an ob-
struction ε(P ). Nori provided the precise insight (1.1), exactly what would work (around 
1990). This article brings Nori’s insight to the fullest fruition and establishes that the 
Homotopy obstruction set π0 (LO(P )) is the appropriate set to house such an obstruction 
ε(P ).

We comment on the organization of this article. First and foremost, it is best that 
the reader is familiar with the introduction of [15]. In section 2, we lay out the basic 
definitions and the foundation of this article. In this section, we define the Homotopy 
obstruction set π0 (LO(P )), and give three other descriptions of the same, as mentioned 
above. In section 3 we prove that the chain homotopy relations on Q̃′(P ), is indeed 
an equivalence relation, under further regularity hypotheses. In section 4, we prove our 
main results on lifting and splitting, which are independent of the additive structure on 
π0 (LO(P )). In section 5, we define the involution map Γ : π0

(
Q̃(P )

)
∼−→ π0

(
Q̃(P )

)
, 

which may be thought of as a substitute for the additive-inverse map, without any regard 
to the existence of any additive structure on π0

(
Q̃(P )

)
. In section 6, we establish the 

monoid structure on π0

(
Q̃(P )

)
. In section 7, we define the Euler class group E(P ), and 

compare it with the homotopy obstruction monoid π0

(
Q̃(P )

)
, as well with Chow group 

of zero cycles. In the Appendix A, we define π0

(
Q̃(P )

)
: SchA −→ Sets, as pre-sheaf, 

and raise the question (A.6) of its motivic interpretation.

Acknowledgment
The authors would like to thank Madhav V. Nori for his academic support, guidance 

and for sharing his invaluable insight on this program, over a long period of time. Thanks 
are also due to Marco Schlichting for clarifying some of the results in [23].

2. Foundation of homotopy obstructions

In this section, we establish some notations and, for a projective module P , over a 
noetherian ring A, give several descriptions of the homotopy pre-sheaves.
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Notations 2.1. Throughout, A will denote a commutative noetherian ring with dimA = d

and k will denote a field. Often, but not always, we will assume 1/2 ∈ A and/or k ⊆ A.
For A-modules M, N , we denote M [T ] := M ⊗A[T ] and M∗ = Hom(M, A). For f ∈

Hom(M, N), denote f [T ] := f ⊗ 1 ∈ Hom(M [T ], N [T ]). Homomorphisms f : M −→ I
I2

would be identified with the induced maps M
IM −→ I

I2 .
For surjective homomorphisms ω1 : M � I1

I2
1
, ω2 : M � I2

I2
2
, where I1, I2 are two 

ideals, with I1 + I2 = A, ω1 � ω2 : M � I1I2
(I1I2)2 will denote the unique surjective map 

induced by ω1, ω2.
For a projective A-module P , Q(P ) = (Q(P ), q) will denote the quadratic space 

H(P ) ⊥ A, where H(P ) = P ∗⊕P is the hyperbolic space. So, P ∗⊕P⊕A is the underlying 
projective module of Q(P ) and, for (f, p, s) ∈ P ∗ ⊕ P ⊕A, q(f, p, s) = f(p) + s2.

The category of (noetherian) schemes over Spec (A) will be donated by SchA. The 
category of sets will be denoted by Sets. Given a pre-sheaf F : SchA → Sets, and a 
scheme X ∈ SchA, define π0(F)(X) by the pushout

F(X ×A1) T=0

T=1

F(X)

F(X) π0(F)(X)

in Sets (2)

So, X �→ π0(F)(X) is also a pre-sheaf on SchA. For an affine scheme X = Spec (B) ∈
SchA and a pre-sheaf F , as above, we write F(B) := F(Spec (B)) and π0(F)(B) :=
π0(F)(Spec (B)).

Given a projective A-module P , we define a homotopy obstruction set π0(LO(P ))
and establish various other descriptions of the same. These are analogous to similar 
obstruction sets available in the literature, when P = An is free.

Definition 2.2. Let A be a noetherian commutative ring, X = Spec (A) and P be a 
projective A-module. By a local P -orientation, we mean a pair (I, ω) where I is an ideal 
of A and ω : P � I

I2 is a surjective homomorphism, which is identified with the surjective 
homomorphism P

IP � I
I2 , induced by ω. A local P -orientation will simply be referred to 

as a local orientation, when P is understood. Denote

⎧⎪⎪⎪⎨⎪⎪⎪⎩
LO(P ) = {(I, ω) : (I, ω) is a local P orientation}
Q(P ) = {(f, s) ∈ P ∗ ⊕A : s(1 − s) ∈ f(P )}
Q̃(P ) = {(f, p, s) ∈ P ∗ ⊕ P ⊕A : f(p) + s(s− 1) = 0}
Q̃′(P ) = {(f, p, z) ∈ P ∗ ⊕ P ⊕A : f(p) + z2 = 1}

(3)
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There is a commutative diagram of set theoretic maps, denoted as follows:

Q̃(P ) ν

η

Q(P )

η′

LO(P )

where, for (f, p, s) ∈ Q̃(P ), ν(f, p, s) = (f, s) (4)

and η′(f, s) = η(f, p, s) = (I, ω), where I = f(P ) +As and ω : P � I
I2 is the homomor-

phism induced by f . These maps η, η′, ν are surjective. If and when 1/2 ∈ A (which we 
often assume), there is also a bijection

κ : Q̃(P ) ∼−→ Q̃′(P ) sending (f, p, s) �→ (2f, 2p, 2s− 1) (5)

Now, suppose P is a fixed projective A-module, and schemes Y ∈ SchA, with π : Y →
Spec (A). Then, LO(π∗P ), Q̃(π∗P ), Q(π∗P ), Q̃′(π∗P ) are likewise defined (3). The as-
sociations Y �→ LO(π∗P ), Y �→ Q(π∗P ), Y �→ Q̃(π∗P ), Y �→ Q̃′(π∗P ) are pre-sheaves 
on SchA. However, the pre sheaf nature of Y �→ LO(π∗P ) requires some clarification. 
For example, for a ring homomorphism β : A −→ B, and (I, ω) ∈ LO(P ) is sent to 
(β(P )B, ω′) ∈ LO(P ⊗B), where ω′ : P ⊗B −→ β(I)B

β(I2)B is induced by ω.
By the pushout diagram (2), applied to these pre-sheaves, the Homotopy obstructions 

pre-sheaves

Y �→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π0 (LO(P )) (Y ),
π0 (Q(P )) (Y )
π0

(
Q̃(P )

)
(Y ),

π0

(
Q̃′(P )

)
(Y ).

are defined. (6)

For historical reasons, we explicitly define the Homotopy obstruction set π0 (LO(P )), by 
the pushout diagrams, in Sets, as follows:

LO(P [T ]) T=0

T=1

LO(P )

LO(P ) π0 (LO(P ))

in Sets. (7)

In deed, π0 (LO(P )) was the Homotopy obstruction explicitly envisioned by Nori 
(see [13]).

For the convenience of our discussions, we make the following notational adjustment.
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Notations 2.3. Until Appendix A, we would only be interested in the value of the above 
homotopy pre sheaves (6), when Y = Spec (A). To simplify notations, we will make the 
following notational adjustment:

⎧⎪⎪⎨⎪⎪⎩
π0

(
Q̃(P )

)
:= π0

(
Q̃(P )

)
(A)

π0

(
Q̃′(P )

)
:= π0

(
Q̃′(P )

)
(A)

π0 (LO(P )) := π0 (LO(P )) (A)

Technically, as well, this adjustment would not make any difference. We would prove 
subsequently that all these sets are isomorphic, when 1/2 ∈ A. This set π0 (LO(P ))
would be referred to as Homotopy obstruction Set of P .

We record, the following basic lemma

Lemma 2.4. Use the notations as above (2.3) and assume 1/2 ∈ A. Then, the bijection 
κ, induces an isomorphism

κ : π0

(
Q̃(P )

)
∼−→ π0

(
Q̃′(P )

)
Further, the maps η, ν, η′ (in diagram (4)) induce set theoretic maps, as denoted in the 
commutative diagram of maps of pre-sheaves:

π0

(
Q̃(P )

)
ν

η

π0 (Q(P ))

η′

π0 (LO(P ))

Proof. It follows from definition of pushout. �
We proceed to prove that, the above is a commutative triangle of bijections:

π0

(
Q̃(P )

)
ν

∼

η �

π0 (Q(P ))

η′

∼

π0 (LO(P ))

(8)

We fix notations, for (f, p, s) ∈ Q̃(P ), its equivalence class in π0

(
Q̃(P )

)
will be denoted 

by [(f, p, s)] and similar notations will be used for (f, s) ∈ Q(P ) and (I, ω) ∈ LO(P ). 
Note, given (I, ω) ∈ LO(P ), ω lifts to a homomorphism f , as follows:
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P
f

ω

I

I
I2

(9)

By Nakayama’s lemma there is an element s ∈ I such that (1 −s)I ⊆ f(P ). Consequently, 
(f, s) ∈ Q(P ) and I = (f(P ), s). This association would not be unique. Such a pair 
(f, s) ∈ Q(P ) will be referred to as a lift of (I, ω) in Q(P ). Now define the map:

χ : LO(P ) −→ π0 (Q(P )) by χ (I, ω) = [(f, s)] ∈ π0 (Q(P )) (10)

where (f, s) ∈ Q(P ) is any lift of (I, ω) in Q(P ), (as in diagram (9)) and [(f, s)] is its 
equivalence class. In several lemmas, we establish that χ is well defined.

Lemma 2.5. Use the notations as in (2.3). Let (I, ωI) ∈ LO(P ) and (f, s) ∈ Q(P ) be a lift, 
as in diagram (9). Further, assume that t(1 − t) ∈ f(P ), with I = (f(P ), s) = (f(P ), t). 
Then

[(f, s)] = [(f, t)] ∈ π0 (Q(P )) .

Proof. First note, (1 − s)I ⊆ f(P ) and (1 − t)I ⊆ f(P ). Write I[T ] = IA[T ]. So,

I[T ] = f(P )A[T ] + sA[T ] = f(P )A[T ] + tA[T ].

Let S(T ) = t + T (s − t). Clearly, S(T ) ∈ I[T ]. Further,

Claim. (1 − S(T ))I[T ] ⊆ f(P )A[T ].

We have (1 − S(T ))I[T ] = (1 − S(T )) (f(P )A[T ] + sA[T ]). So, we only need to prove 
that (1 − S(T ))s ∈ f(P )A[T ]. But

(1 − S(T ))s = (1 − t)s− T (s− t)s = (1 − t)s− T [(s− 1)s + (1 − t)s] ∈ f(P )A[T ]

So, the claim is established. Therefore, (1 − S(T ))S(T ) ∈ f(P )A[T ]. Denote f [T ] :=
f⊗1A[T ]. Then, f [T ] : P [T ] � f(P )A[T ] is a surjection. Clearly, (f [T ], S(T )) ∈ Q(P [T ]). 
Now, (f [T ], S(T ))T=0 = (f, t) and (f [T ], S(T ))T=1 = (f, s). The proof is complete. �
Lemma 2.6. Use the notations as in (2.3). Suppose (I, ω) ∈ LO(P ) and f, g be two lifts 
of ω as follows:

P
f

ω

f(P )

I
I2

and

P
g

ω

g(P )

I
I2
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� I = (f(P ), s) = (g(P ), t) and s(1 − s) ∈ f(P ), t(1 − t) ∈ g(P ).

Then

[(f, s)] = [(g, t)] ∈ π0 (Q(P ))

Proof. Note, (g− f)(P ) ⊆ I2. Let F = f [T ] +T (g[T ] − f [T ]) ∈ P [T ]∗. It is obvious that

I[T ] = F (P [T ]) + I[T ]2

For completeness, we give a proof.

∀ x ∈ I, x = (1 − s)x + sx = f(p) + sx where p ∈ P, sx ∈ I2

So,

(modulo I[T ]2) x ≡ f(p) ≡ F [T ](p).

So,

∃ S(T ) ∈ I[T ] � (1 − S(T ))I[T ] ⊆ F [T ](P [T ])

So, (F [T ], S(T )) ∈ Q(P [T ]). Therefore,

[(f, S(0))] = [(F (0), S(0))] = [(F (1), S(1))] = [(g, S(1))]

Now, the proof is complete by (2.5). �
Theorem 2.7. Use the notations as in (2.3). Let (I, ω) ∈ LO(P ). Then, χ(I, ω) as defined 
in equation (10), is well defined.

Proof. Follows from Lemma 2.6. �
Now, we prove that ν is a bijection, as follows.

Theorem 2.8. Use the notations as in (2.3). Then, the map

ν : π0

(
Q̃(P )

)
� π0 (Q(P )) is a bijection.

Proof. Define a map Ψ0 : Q(P ) → π0

(
Q̃(P )

)
as follows: Given (f, s) ∈ Q(P ), ∃ p ∈

P � f(p) = s(1 − s). Define

Ψ0(f, s) := [(f, p, s)] ∈ π0

(
Q̃(P )

)
.
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We show that this association is a well defined map. To show this, suppose there is 
another q ∈ P such that f(q) = s(1 − s). Note f(p − q) = 0. So, f [T ](p + T (q − p)) =
f(p) + Tf(q − p) = f(p) + 0 = s(1 − s). Therefore,

H(T ) := (f [T ], p + T (q − p), s) ∈ Q̃(P [T ])

and, hence

H(0) = (f, p, s) ∼ H(1) = (f, q, s).

This establishes that Ψ0 is well defined. Now, we show that Ψ0 is homotopy invariant. 
To see this, suppose H(T ) = (F, S(T )) ∈ Q(P [T ]). Then, S(T )(1 − S(T )) = F (p(T )), 
for some p(T ) ∈ P [T ]. Write H̃ = (F, p(T ), S(T )) ∈ Q̃(P [T ]). So,

Ψ0(F (0), s(0)) = [H̃(0)] = [H̃(1)] = Ψ0(F (1), S(1))

This establishes that Ψ0 factors through a map

Ψ : π0 (Q(P )) → π0

(
Q̃(P )

)
.

It is easy to check that ν and Ψ are inverse of each other. The proof is complete. �
Lemma 2.9. Use the notations as in (2.3). Then, the map χ : LO(P ) −→ π0 (Q(P )) (see 
(10)) induces a well defined map χ : π0 (LO(P )) −→ π0 (Q(P )), which is the inverse of 
the map η′ : π0 (Q(P )) −→ π0 (LO(P )).

Consequently, all the maps η, η′, ν in diagram (8), are bijections.

Proof. The latter statement follows from the first one. Given a homotopy H(T ) ∈
LO(P [T ]), it lifts to a homotopy H̃(T ) = (F (T ), S(T )) ∈ Q(P [T ]). So, χ(H(0)) =
[(F (0), S(0))] = [(F (1), S(1))] = χ(H(1)). So, χ is homotopy invariant, hence χ is well 
defined. It is easy to see that this induced map is the inverse of η′. The proof is com-
plete. �
Corollary 2.10. Use the notations as in (2.3). Recall the notation

Q2n(A) =
{

(x1, . . . , xn; y1, . . . , yn; z) ∈ A2n+1 :
∑

xiyi = z(1 − z)
}
.

If P = An = ⊕Aei is free, then Q2n(A) ∼= Q̃(P ) is a bijection. This bijection induces a 

bijection π0 (Q2n(A)) ∼= π0

(
Q̃(P )

)
.

Before we proceed, we introduce the following notions.
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Notations 2.11. Suppose A is a commutative noetherian ring, with dimA = d and P is a 
projective A-module, with rank(P ) = n. Denote ζ = ν−1χ : LO(P ) −→ π0

(
Q̃(P )

)
and 

ζ0 : Q̃(P ) −→ π0

(
Q̃(P )

)
. So, we have a commutative diagram:

Q̃(P )
ζ0

η

LO(P )
ζ

π0

(
Q̃(P )

)

Remark 2.12. The equation 
∑n

i=1 XiYi + Z(Z − 1) = 0 would be the main motivation 
behind the definition of Q̃(P ). For a field k and the ring B(k) = k[X1,...,Xn;Y1,...,Yn;Z]

(
∑n

i=1 XiYi+Z(Z−1)) , 
Swan [31] computed the total Chow ring CH(B(k)) of B(k). This ring B(k) is sometimes 
referred to as the universal ring, for complete intersections. Using the structure of the 
Chow ring CH(B(k)), together with Riemann-Roch Theorem, Mohan Kumar and Nori 
[26] proved that the ideal I = (X1, . . . , Xn, Z)B(k) ⊆ B(k), is not image of a projective 
B(k)-module of rank n.

In the more recent past, the notation Q2n := Spec (B(k)) has been somewhat standard 
in the literature of the motivic approach to Euler class theory.

In fact, sometimes it would be convenient to work with Q̃(P ) than LO(P ). This is 
due to the fact that, when 1/2 ∈ A, Q̃(P ) ∼= Q̃′(P ), which has a nice quadratic structure 
that we can exploit (see §3).

3. Homotopy equivalence

In this section, we prove the following key homotopy theorem.

Theorem 3.1. Let A be a regular ring over a field k, with 1/2 ∈ k. Let P be a projec-
tive A-module, with rank(P ) = n ≥ 2, and (Q(P ), q) = H(P ) ⊥ A (see 2.1). Recall 
Q̃′(P ) ⊆ Q(P ) = P ∗ ⊕ P ⊕ A. Suppose H(T ) ∈ Q̃′(P [T ]). Then, there is an orthogonal 
transformation σ(T ) ∈ O(Q(P [T ]), q), such that

H(T ) = σ(T )(H(0)) and σ(0) = 1.

Proof. Let H(T ) = (f(T ), p(T ), s(T )) ∈ Q̃′(P [T ]) be a homotopy, as above. So, H(0) ∈
Q̃′(P ). Then,

A[T ]H(T ) ∼= A[T ]H(0) ∼= (A[T ], q0) are isometric,
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where q0 is the trivial quadratic space of rank one. The bilinear inner product in Q(P )
will be denoted 〈−, −〉. We have the following split exact sequences of quadratic spaces:

0 K Q(P [T ])
〈H(T ),−〉

A[T ] 0

0 K0 Q(P )
〈H(0),−〉

A 0

Therefore, K = (A[T ]H(T ))⊥, K0 = (AH(0))⊥ are orthogonal complements. Write K :=
K ⊗ A[T ]

(T ) . Note, for ℘ ∈ Spec (A), Q(P )℘ ∼= (A, q2n+1), where q2n+1 =
∑n

i=1 XiYi + Z2. 
So, K℘

∼= (K0)℘ are isometric. It is standard (see [15, Lemma 4.1]), that (K0)℘ =
(A℘H(0))⊥ ∼= (A, q2n)℘ where q2n =

∑n
i=1 XiYi. In other words, K is locally trivial. By 

the Quadratic version [15, Theorem 3.5] of Lindel’s theorem [11], there is an isometry 
τ : K ∼−→ K ⊗ A[T ]. Further, it follows K = (AH(0))⊥ ∼= K0. Therefore, there is an 
isometry σ0 : K ∼−→ K0, which extends to an isometry σ0 ⊗ 1 : K⊗A[T ] ∼−→ K0 ⊗A[T ]. 
Then, σ1 := (σ0 ⊗ 1)τ : K ∼−→ K0 ⊗A[T ] is an isometry. Finally, note

(A[T ]H(T ), q|A[T ]H(T )) ∼= (A[T ], q0) ∼= (A[T ]H(0), q|A[T ]H(0)).

Now, consider the diagram

0 K

σ1

Q(P [T ])

σ(T )

〈H(T ),−〉
A[T ] 0

0 K0 ⊗A[T ] Q(P [T ])
〈H(0),−〉

A[T ] 0

(11)

of quadratic spaces. In this diagram, the horizontal lines are split exact sequences of 
quadratic spaces. Hence, there is an isometry σ(T ) ∈ O (Q(P [T ]), q), such that the dia-
gram commutes. That means, for all v ∈ Q(P [T ]), we have 〈H(T ), v〉 = 〈H(0), σ(T )v〉. 
Replacing σ(T ) by σ(T )−1, we have σ(T )H(0) = H(T ). So, we have σ(0)H(0) = H(0). 
Again, by replacing σ(T ) by σ(T )σ(0)−1, we have σ(0) = 1. The proof is complete. �

The following Corollary would be of some importance for our future discussions.

Corollary 3.2. Let A be a regular ring over a field k, with 1/2 ∈ k. Let P be a projective 
A-module, with rank(P ) = n ≥ 2, and (Q(P ), q) = H(P ) ⊥ A. Let u, v ∈ Q̃′(P ) be 

such that [u] = [v] ∈ π0

(
Q̃′(P )

)
. Then, there is a homotopy H(T ) ∈ Q̃′(P [T ]) such that 

H(0) = u and H(1) = v. Equivalently, for u, v ∈ Q̃(P ) if ζ0(u) = ζ0(v) ∈ π0

(
Q̃(P )

)
, 

then there is a homotopy H(T ) ∈ Q̃(P [T ]) such that H(0) = u and H(1) = v.
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Proof. Suppose u, v ∈ Q̃(P ) such that [u] = [v] ∈ π0

(
Q̃′(P )

)
. Then, there is a se-

quence of homotopies H1(T ), . . . , Hm(T ) ∈ Q̃′(P [T ]) such that u =: u0 := H1(0), 
um := Hm(1) = v and ∀ i = 1, . . . , m − 1, we have ui := Hi(1) = Hi+1(0). By Theo-
rem 3.1, for i = 1, . . . , m there are orthogonal matrices σi(T ) ∈ O(Q(P [T ]), q) such that 
σi(0) = 1 and Hi(T ) = σi(T )Hi(0) = σi(T )ui−1. Therefore, ui = Hi(1) = σi(1)ui−1.

Write H(T ) = σm(T ) · · ·σ1(T )u0. Then, H(T ) ∈ Q̃′(P [T ]) and H(0) = u0 and 

H(1) = um. This establishes first part of the statement on π0

(
Q̃′(P )

)
. The lat-

ter assertion on π0

(
Q̃(P )

)
follows from the former, by the bijective correspondences 

Q̃′(P ) ∼−→ Q̃(P ) and Q̃′(P [T ]) ∼−→ Q̃(P [T ]). This completes the proof. �
Remark 3.3. Another way to state (3.2) would be that the homotopy relation on Q̃(P )
is actually an equivalence relation.

In a slightly more formal language, the above is summarized as follows.

Theorem 3.4. Let A be a regular ring over a field k, with 1/2 ∈ k. Let P be a 
projective A-module, with rank(P ) = n ≥ 2, and (Q(P ), q) = H(P ) ⊥ A. For, 
σ(T ) ∈ O (Q(P [T ]), q) and u ∈ Q̃′(P ), define the (left) action σ(T )u := σ(1)u ∈ Q̃′(P ). 
Denote O (Q(P [T ]), q, T ) = {σ(T ) ∈ O (Q(P [T ]), q) : σ(0) = 1}. Then, the map

Q̃′(P )
O (Q(P ), q, T ) −→ π0

(
Q̃′(P )

)
is a bijection.

Proof. Similar to the proof of (3.2). �
4. Homotopy triviality and lifting

In this section, under further smoothness conditions, we establish that for (I, ωI) ∈
LO(P ), the triviality of ζ(I, ωI) implies that ωI lifts to a surjective map P � I. We 
start this section with the following notations and definitions.

Definition 4.1. Suppose A is a commutative noetherian ring, with dimA = d and P is 
a projective A-module, with rank(P ) = n. There are two distinguished points in Q̃(P ), 
namely:

0 := (0, 0, 0) ∈ Q̃(P ), 1 := (0, 0, 1) ∈ Q̃(P )

We denote e0 = ζ0(0) ∈ π0

(
Q̃(P )

)
, and e1 = ζ0(1) ∈ π0

(
Q̃(P )

)
.

Use the same notations e0, e1 ∈ π0 (LO(P )) ∼= π0

(
Q̃(P )

)
, to denote their respective 

images. Define the obstruction class

ε(P ) := e0 ∈ π0 (LO(P )) ∼= π0

(
Q̃(P )

)
.
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In the light of (1.1), ε(P ) will be referred to as (Nori) Homotopy Class of P , which may 
sometimes be shortened. Note, for any f ∈ P ∗ and p ∈ P , ε(P ) := e0 = ζ0(f, 0, 0) =
ζ0(0, p, 0) ∈ π0

(
Q̃(P )

)
.

We record the following obvious observation.

Lemma 4.2. Suppose A is a commutative noetherian ring with dimA = d and P is a 
projective A-module. Let p ∈ P and f ∈ P ∗ be such that f(p) = 1 (i.e. P ∼= Q ⊕A). Let

0 = (0, 0, 0), u = (f, 0, 0), 1 = (0, 0, 1) ∈ Q̃(P ).

Then, ζ0(0) = ζ0(u) = ζ0(1) ∈ π0

(
Q̃(P )

)
. In other words,

ε(P ) = e0 = e1.

Proof. The first equality is obvious and was mentioned above (4.1). To prove the second 
equality, write H(T ) = ((1 − T )f, Tp, T ). Then, (1 − T )f(Tp) = T (1 − T ). So, H(T ) ∈
Q̃(P [T ]). We have H(0) = u and H(1) = (0, p, 1).

Now write G(T ) = (0, (1 − T )p, 1)) ∈ Q̃(P [T ]). Then, G(0) = (0, p, 1) and G(1) =
(0, 0, 1). The proof is complete. �

The following is the main result in this section.

Theorem 4.3. Suppose A is an essentially smooth ring over an infinite perfect field k, 
with 1/2 ∈ k and dimA = d. Let P be a projective A-module with rank(P ) = n, with 
2n ≥ d + 3. Suppose (I, ωI) ∈ LO(P ), with height(I) ≥ n. Then, ωI lifts to a surjective 
map P � I if and only if ε(P ) = ζ(I, ωI).

Proof. Suppose ωI lifts to a surjective map f : P � I. Write H(T ) = (f(T ), 0, 0) ∈
Q̃(P [T ]). Then, ζ(I, ωI) = ζ0(H(1)) = ζ0(H(0)) = ζ0(0) = ε(P ).

Conversely, suppose ζ(I, ωI) = ζ0(0). For notational convenience, fix f0 ∈ P ∗, and 
let v0 = (f0, 0, 0) ∈ Q̃(P ). Then, ζ(I, ωI) = ζ0(0) = ζ0(v0). There is an element u =
(f1, p1, s1) ∈ Q̃(P ) such that η(u) = (I, ωI). By Moving Lemma argument 4.5 (below), 
we can assume that height(f0(P )) ≥ n and height(f1(P )) ≥ n. We have, ζ0(u) = ζ0(v0). 
By (3.2), there is a homotopy H(T ) = (f(T ), p(T ), S(T )) ∈ Q̃(P [T ]) such that H(0) = v0
and H(1) = u. Write η(H(T )) = (J, Ω). We would apply [3, Theorem 4.13], for which we 
would need height(J) ≥ n. So, we modify H(T ), as follows. Denote Z(T ) = 1 − S(T ). 
Write P = {℘ ∈ Spec (A[T ]) : height(℘) ≤ n − 1, T (1 − T )Z(T ) /∈ ℘}. For ℘ ∈ P, let 
δ(℘) be the maximum of the length of chains in P, ending at ℘. Then δ : P −→ N

is a generalized dimension functions (consult [12, pp. 36-37]). Note, ∀ ℘ ∈ P, we have 
δ(℘) ≤ n − 1. Now, (f(T ), T (1 − T )Z(T )2) ∈ P [T ]∗ ⊕ A[T ] is basic on P. So, there is 
an element g(T ) ∈ P [T ]∗ such that F (T ) = f(T ) + T (1 − T )Z(T )2g(T ) is basic on P. 
It follows, F (0) = f(0) and F (1) = f(1).
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We have Z(T )(1 − Z(T )) = (1 − S(T ))S(T ) =

f(T )(p(T )) = F (T )(p(T )) − T (1 − T )Z(T )2g(T )(p(T ))

Write J = (f(T )(P [T ]), Z(T )). Then J = (F (T )(P [T ]), Z(T )). Write M = J
F (T )(P [T ]) . 

Let p1, . . . , pm be a set of generators of P . So, J is generated by f(T )(p1), . . . , f(T )(pm),
Z(T ). Use “overline” to denote the images in M and repeat the proof of Nakayama’s 
Lemma, as follows:⎛⎜⎜⎜⎜⎜⎝

f(T )(p1)
f(T )(p2)

· · ·
f(T )(pm)
Z(T )

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 −T (1 − T )Z(T )g(T )(p1)
0 0 · · · 0 −T (1 − T )Z(T )g(T )(p2)
0 0 · · · 0 · · ·
0 0 · · · 0 −T (1 − T )Z(T )g(T )(pm)
0 0 · · · 0 Z(T ) − T (1 − T )Z(T )g(T )(p(T ))

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
f(T )(p1)
f(T )(p2)

· · ·
f(T )(pm)
Z(T )

⎞⎟⎟⎟⎟⎟⎠
So,⎛⎜⎜⎜⎜⎜⎝

1 0 · · · 0 T (1 − T )Z(T )g(T )(p1)
0 1 · · · 0 T (1 − T )Z(T )g(T )(p2)
0 0 · · · 0 · · ·
0 0 · · · 1 T (1 − T )Z(T )g(T )(pm)
0 0 · · · 0 1 − Z(T ) + T (1 − T )Z(T )g(T )(p(T ))

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
f(T )(p1)
f(T )(p2)

· · ·
f(T )(pm)
Z(T )

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
· · ·
0
0

⎞⎟⎟⎟⎟⎟⎠
With Z ′(T ) = Z(T ) − T (1 − T )Z(T )g(T )(p(T )), the determinant of this matrix 
is 1 − Z ′(T ). It follows, (1 − Z ′(T ))J ⊆ F (T )(P [T ]). So, (1 − Z ′(T ))Z ′(T ) =
F (T )(q(T )) for some q(T ) ∈ P [T ]. Note, Z ′(0) = Z(0) and Z ′(1) = Z(1). Therefore, 
(F (T ), q(T ), Z ′(T )) ∈ Q̃(P [T ]). Also, with S′(T ) = 1 − Z ′(T ), (F (T ), q(T ), S′(T )) ∈
Q̃(P [T ]). We have, S′(T )(1 − S′(T )) = (1 − Z ′(T ))Z ′(T ) = F (T )(q(T )) S′(0) =
1 − Z ′(0) = 1 − Z(0) = S(0) = 0 and S′(1) = 1 − Z ′(1) = 1 − Z(1) = S(1).

Write H(T ) = (F (T ), q(T ), S′(T )) and η(H(T )) = (J ′, Ω′). It is clear H(0) =
(f0, q(0), 0), H(1) = (f1, q(1), S(1)). So, η(H(0)) = η(v0) and η(H(1)) = η(u) = (I, ωI).

We have J ′ = (F (T )(P [T ]), S′(T )). We claim that height(J ′) ≥ n. To see this, let 
J ′ ⊆ ℘ ∈ Spec (A[T ]). If T ∈ ℘, then I0 := f0(P ) ⊆ ℘ and hence height(℘) ≥ n. 
Likewise, if 1 − T ∈ ℘, then I1 := f1(P ) ⊆ ℘ and hence height(℘) ≥ n. So, we assume 
T (1 − T ) /∈ ℘. If Z(T ) ∈ ℘, then J = (F (T )(P [T ]), Z ′(T )) = (F (T )(P [T ]), Z(T )) ⊆ ℘, 
which is impossible because S′(T ) ∈ ℘. So, T (1 − T )Z(T ) /∈ ℘. Since F is basic on P, 
height(℘) ≥ n. This establishes the claim.

So, H(T ) = (F (T ), q(T ), S′(T )) ∈ Q̃(P [T ]) is such that η(H(0)) = (I0, ωI0), 
η(H(1)) = (I, ωI) and with η(H(T )) = (J ′, Ω′), we have height(J ′) ≥ n. If T ∈ ℘ ∈
Ass 

(
A[T ]
J ′

)
then (J ′(0), T ) = (I0, T ) ⊆ ℘. Then, height(℘) ≥ n + 1. This is impossible 

because A[T ] is regular (Cohen-Macaulay) and J ′ is local complete intersection ideal. 
Hence,
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A[T ]
TJ ′

T=0
A

A[T ]
J ′

A
J ′(0)

is a patching diagram (see (4.4) below). So, the map Ω′ : P [T ] � J ′

(J ′)2 and f0 : P � I0

combines to give a surjective maps φ : P [T ] � J ′

T (J ′)2 . Now, by [3, Theorem 4.13], there 

is a surjective homomorphism ϕ : P [T ] � J ′ such that ϕ(0) = f0 and ϕ ⊗ A[T ]
J ′ = Ω′. 

Now, it follows that ϕ(1) is a lift of ωI . This completes the proof. �
We used the following lemma above, while it needs a proof. The standard references for 

Patching diagrams are [22,28,27]. We will be specific in the following statement, because 
the literature does not seem complete regarding definitions of Patching diagrams of 
modules that are not projective.

Lemma 4.4. Let R be a noetherian commutative ring and A = R[T ]. Let I be a locally 
complete intersection ideal of A with height(I) = r. Assume T : A

I ↪→ A
I is injective (i.e. 

T /∈ ℘ ∈ Ass 
(
A
I

)
). Then,

I
TI2

I
TI

I
I2

I
I2+TI

is a Patching diagram, in the sense that it is a Cartesian square. Further,

1. I
TI

∼−→ I(0).
2. I

I2+TI

∼−→ I(0)
I(0)2 .

Proof. The patching diagram follows, because I2 ∩ (TI) = TI2.
To see this, first we have TI2 ⊆ I2 ∩ (TI). Suppose f ∈ I2 ∩ (TI). Then, f = Tg with 

g ∈ I. Now, consider the map

T : I

I2 −→ I

I2

Since I
I2 is projective AI -module and T : A

I ↪→ A
I is injective, T is also injective on I

I2 . 
So, g ∈ I2. So, f = Tg ∈ TI2.

Now, we prove I
TI

∼−→ I(0). Obviously, the map is surjective. Suppose f(T ) ∈ I and 
f(0) = 0. Then, f = Tg. Since T is non zero divisor on A , g ∈ I. So, f ∈ TI.
I
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Finally, we prove I
I2+TI

∼−→ I(0)
I(0)2 . Again, the map is on to. Suppose f(T ) ∈ I and 

f(0) ∈ I(0)2. Then, f(0) =
∑

fi(0)gi(0). Then, f−
∑

figi ∈ (T ) ∩I = TI (by the above, 
if we like). So, f ∈ I2 + TI. �

We close this section with the following “moving lemma argument”, which is fairly 
standard. A number of variations of the same (4.5) would be among the frequently used 
tools for the rest of our discussions.

Lemma 4.5 (Moving Lemma). Suppose A is a commutative noetherian ring with dimA =
d and P is a projective A-module with rank(P ) = n. Assume 2n ≥ d + 1. Let K ⊆ A

be an ideal with height(K) ≥ n and (I, ωI) ∈ LO(P ). Then, there is an element v =
(f, p, s) ∈ Q̃(P ) such that η(v) = (I, ωI). Further, with J = f(P ) + A(1 − s), we have 
height(J) ≥ n and J + K = A.

Proof. Let f0 : P � I be any lift of ωI . Then, I = f0(P ) + I2. By Nakayama’s Lemma, 
there is an element t ∈ I, such that (1 −t)I ⊆ f0(P ). Therefore, t(1 −t) = f0(p0) for some 
p0 ∈ P . (Readers are referred to [12] regarding generalities on Basic Element Theory and 
generalized dimension functions.) Write

P = {℘ ∈ Spec (A) : t /∈ ℘, and either K ⊆ ℘ or height(℘) ≤ n− 1}

There is a generalized dimension function (see [12]) δ : P −→ N, such that δ(℘) ≤
n −1 ∀ ℘ ∈ P. Now (f0, t2) ∈ P ∗⊕A is basic on P. So, there is an element g ∈ P ∗ such 
that f := f0+t2g is basic on P. It follows, f(P ) +At = f0(P ) +At = I and I = f(P ) +I2. 
By Nakayama’s Lemma, there is an element s ∈ I, such that (1 − s)I ⊆ f(P ) and hence 
f(p) = s(1 − s), for some p ∈ P , Hence, I = (f(P ), s). Now, write J = f(P ) +A(1 − s). 
For J ⊆ ℘ ∈ Spec (A), s /∈ ℘ and hence t /∈ ℘. Since, f is basic on P, height(℘) ≥ n. 
This establishes, height(J) ≥ n.

Now suppose J + K ⊆ ℘ ∈ Spec (A). By the same argument above, t /∈ ℘. Hence, 
℘ ∈ P. This is impossible, because f is basic on P. So, J +K = A. Now, v = (f, p, s) ∈
Q̃(P ), satisfies the requirement. �

The following is a converse of Lemma 4.2.

Corollary 4.6. Suppose A is an essentially smooth ring over an infinite perfect field k, 
with 1/2 ∈ k and dimA = d. Let P be a projective A-module with rank(P ) = n. Assume 
2n ≥ d + 3. Then,

ε(P ) = e1 ⇐⇒ P ∼= Q⊕A

for some projective A-module Q.

Proof. Suppose P ∼= Q ⊕ A. Then, by (4.2), ε(P ) = e0 = e1. Conversely, suppose 
ε(P ) = e0 = e1. Fix f0 ∈ P ∗ such that height(f0(P )) = n. Then, ζ0(f0, 0, 0) = e0 = e1. 
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Then, it follows from Theorem 4.3 that η(0, 0, 1) lifts to a surjective map P � A. This 
completes the proof. �
5. The involution

In this section, we introduce an involution map Γ : π0

(
Q̃(P )

)
−→ π0

(
Q̃(P )

)
. This 

can be thought of as a substitute to additive inverse map, without any regard to existence 
of an addition.

Definition 5.1. Suppose A is a commutative noetherian ring and P is a projective 
A-module, with rank(P ) = n. For (f, p, s) ∈ Q̃(P ), define Γ(f, p, s) = (f, p, 1 − s). 
This association, v �→ Γ(v), establishes a bijective correspondence

Γ : Q̃(P ) ∼−→ Q̃(P ), such that Γ2 = 1.

We would say that Γ is an involution on Q̃(P ), which will be a key instrument in the sub-
sequent discussions. (This notation Γ will be among the standard notations throughout 
this article.)

We record the following obvious lemma.

Lemma 5.2. Suppose A is a commutative noetherian ring and P is a projective A-module, 
with rank(P ) = n and Γ : Q̃(P ) ∼−→ Q̃(P ) is the involution. Let v = (f, p, s) ∈ Q̃(P )
and denote η(v) = (I, ωI) and η(Γ(v)) = (J, ωJ). Then,

1. I ∩ J = f(P ).
2. For H(T ) ∈ Q̃(P [T ]), we have Γ(H(T ))T=t = Γ(H(t)).
3. Therefore, ∀ v, w ∈ Q̃(P ) ζ0(v) = ζ0(w) ⇐⇒ ζ0(Γ(v)) = ζ0(Γ(w)).

In deed, Γ factors through an involution on π0

(
Q̃(P )

)
, as follows.

Corollary 5.3. Suppose A is a commutative noetherian ring and P is a projective 
A-module, with rank(P ) = n. Then, the involution Γ : Q̃(P ) ∼−→ Q̃(P ) induces a 

bijective map Γ̃ : π0

(
Q̃(P )

)
∼−→ π0

(
Q̃(P )

)
, such that Γ̃2 = 1 and ζ0Γ = Γ̃ζ0. We say Γ̃

is an involution. (The notation Γ̃ will also be among our standard notations throughout 
this article.)

Proof. First, consider the map ζ0Γ : Q̃(P ) −→ π0

(
Q̃(P )

)
. For, H(T ) ∈ Q̃(P [T ]), we 

have ζ0Γ(H(0)) = ζ0Γ(H(1)). Therefore, ζ0Γ is homotopy invariant. Hence, it induces a 

well defined map Γ̃ : π0

(
Q̃(P )

)
∼−→ π0

(
Q̃(P )

)
. Clearly, Γ̃2 = 1 and Γ̃ is a bijection. 

The proof is complete. �
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The following is a way to compute the involution.

Corollary 5.4. Suppose A is a commutative noetherian ring and P is a projective 
A-module, with rank(P ) = n. Suppose (I, ω) ∈ LO(P ). For any v = (f, p, s) ∈ Q̃(P )
with η(v) = (I, ω), write η(Γ(v)) = (J, ωJ). Then,

Γ̃(ζ(I, ω)) = ζ(J, ωJ) ∈ π0

(
Q̃(P )

)
.

Proof. Obvious. �
The following is another version of the Moving Lemma 4.5.

Lemma 5.5 (Moving Representation). Suppose A is a commutative noetherian ring, with 
dimA = d. Let P be a projective A-module, with rank(P ) = n and 2n ≥ d + 1. Let 
x ∈ π0

(
Q̃(P )

)
and let K ⊆ A be an ideal with height(K) ≥ n. Then, there is a local 

P -orientation (J, ωJ) ∈ LO(P ) such that x = ζ(J, ωJ), height(J) ≥ n and J + K = A.

Proof. Let x = ζ(I, ωI). First, η(u) = (I, ωI) for some u ∈ Q̃(P ). Denote (I0, ωI0) :=
η(Γ(u)). Then, Γ̃(x) = ζ(I0, ωI0).

Now, we apply Moving Lemma 4.5, to (I0, ωI0) and K. There is v ∈ Q̃(P ), such that 
η(v) = (I0, ωI0), and with η(Γ(v)) = (J, ωJ), we have height(J) ≥ n and J + K = A. 
Now, x = Γ̃(Γ̃(x)) = Γ̃(ζ(I0, ωI0)) = ζ(J, ωJ). The proof is complete. �
6. The monoid structure on π0 (LO(P ))

In this section, we define and establish a natural monoid structure on the homotopy 
obstruction set π0 (LO(P )) ∼= π0

(
Q̃(P )

)
, when 2rank(P ) ≥ dimA +2 and A is a regular 

ring over a field k, with 1/2 ∈ k. We start with the following basic ingredient of the group 
structure.

Definition 6.1. Let A be a commutative noetherian ring, with dimA = d, and P be a 
projective A-module, with rank(P ) = n ≥ 2. Let (I, ωI), (J, ωJ) ∈ LO(P ) be such that 
I+J = A. Let ω := ωI �ωJ : P � IJ

(IJ)2 be the unique surjective map induced by ωI , ωJ . 
We define a pseudo-sum

(I, ωI)+̂(J, ωJ) := (IJ, ω) ∈ π0 (LO(P )) .

Note, pseudo-sum commutes.

In the rest of this section, we establish that the pseudo sum respects homotopy, when 
2n ≥ d + 2, and A is a regular ring over a field k, with 1/2 ∈ k. Consequently, this leads 
to a addition operation on π0 (LO(P )). The following is the key lemma.
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Lemma 6.2. Let A be a commutative noetherian ring and P be a projective A-module, 
with dimA = d, rank(P ) = n, and 2n ≥ d + 2. Consider a homotopy

H(T ) = (f(T ), p(T ), Z(T )) ∈ Q̃(P [T ]).

Write η(H(0)) = (K0, ωK0) and η(H(1)) = (K1, ωK1). Further suppose (J, ωJ) ∈ LO(P )
such that K0 + J = K1 + J = A and height(J) ≥ n. Then, there is a homotopy 
H(T ) ∈ Q̃(P [T ]) such that η(H(0)) = (K0J, ωK0J ) and η(H(1)) = (K1J, ωK1J ), where, 
for i = 0, 1 ωKiJ := ωKi

� ωJ : P � KiJ
(KiJ)2 . Consequently,

(K0, ωK0)+̂(J, ωJ) = (K1, ωK1)+̂(J, ωJ) ∈ π0 (LO(P )) .

Proof. We will write f = f(T ), p = p(T ) and Z = Z(T ). Denote Y = 1 − Z and 
η(Γ(H(T )) = (J , ωJ ). Then, J = (f(P [T ]), Y ). Write

P = {℘ ∈ Spec (A[T ]) : Y T (1 − T ) /∈ ℘, J ⊆ ℘}.

There is a generalized dimension function δ : P −→ N such that ∀ ℘ ∈ P, δ(℘) ≤
dim

(
A[T ]
JA[T ]

)
≤ d +1 −height(J) ≤ d +1 −n ≤ n −1. Further, (f, Y 2T (1 −T )) is a basic 

element in P [T ]∗ ⊕ A[T ], on P. Therefore, there is an element λ := λ(T ) ∈ P [T ]∗ such 
that

f ′ = f + Y 2T (1 − T )λ is basic on P. So, f ′(0) = f(0), f ′(1) = f(1).

We have J = (f(P [T ]), Y ) = (f ′(P [T ]), Y ). Further,

Z(1 − Z) = Y (1 − Y ) = f(p) = f ′(p) − Y 2T (1 − T )λ(p).

So,

Y = f ′(p) − Y 2T (1 − T )λ(p) + Y 2

Write M = J
f ′(P [T ]) . Let p1, . . . , pm be a set of generators of P . Use “overline” to indicate 

images in M . We intend to repeat the proof of Nakayama’s Lemma and we have

⎛⎜⎜⎜⎜⎜⎝
f(p1)
f(p2)
· · ·

f(pm)
Y

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 −λ(p1)Y T (1 − T )
0 0 · · · 0 −λ(p2)Y T (1 − T )
· · · · · · · · · · · · · · ·
0 0 · · · 0 −λ(pm)Y T (1 − T )
0 0 0 0 Y − λ(p)Y T (1 − T )

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
f(p1)
f(p2)
· · ·

f(pm)
Y

⎞⎟⎟⎟⎟⎟⎠ =⇒
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⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 λ(p1)Y T (1 − T )
0 1 · · · 0 λ(p2)Y T (1 − T )
· · · · · · · · · · · · · · ·
0 0 · · · 1 λ(pm)Y T (1 − T )
0 0 0 0 1 − Y + λ(p)Y T (1 − T )

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
f(p1)
f(p2)
· · ·

f(pm)
Y

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
· · ·
0
0

⎞⎟⎟⎟⎟⎟⎠
Multiplying by the adjoint matrix and computing the determinant, with Y ′ = Y −
λ(p)Y T (1 − T ), we have

(1 − Y ′)J ⊆ f ′(P [T ]).

We have Y ′(0) = Y (0) = 1 − Z(0), Y ′(1) = Y (1) = 1 − Z(1). Further,

Y ′(1 − Y ′) = f ′(p′) for some p′ ∈ P [T ].

Therefore H ′(T ) = (f ′, p′, Y ′) ∈ Q̃(P [T ]).

We have

J = (f(P [T ]), Y ) = (f ′(P [T ]), Y ) = (f ′(P [T ]), Y ′).

In fact, η(H ′(T )) = (J , ωJ ) and write η(Γ(H ′(T ))) = (I, ωI). Claim

I + JA[T ] = A[T ]. i.e. (f ′(P [T ]), 1 − Y ′) + JA[T ] = A[T ].

To see this, let

I + JA[T ] ⊆ ℘ ∈ Spec (A[T ])

1. If Y ∈ ℘ then J = (f ′(P [T ]), Y ) = (f ′(P [T ]), Y ′) ⊆ ℘. So, Y ′ ∈ ℘, which is 
impossible, since 1 − Y ′ ∈ ℘. So, ℘ ∈ D(Y ).

2. Since f ′ is unimodular of P and ℘ ∈ D(Y ), we must have T (1 − T ) ∈ ℘.
3. Now, T ∈ ℘ implies,

I(0) + J = (f ′(0)(P ), 1 − Y ′(0)) + J = (f(0)(P ), 1 − Y (0)) + J = K0 + J = A ⊆ ℘

which is impossible.
4. Likewise, 1 − T ∈ ℘ implies,

I(1) + J = (f ′(1)(P ), 1 − Y ′(1)) + J = (f(0)(P ), 1 − Y (1)) + J = K1 + J = A ⊆ ℘.

This is also impossible.
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This establishes the claim. Recall, ωI : P [T ] � I
I2 is induced by f ′. Extend ωJ : An � J

J2

to a surjective map ωJA[T ] : A[T ]n � JA[T ]
J2A[T ] . Let

Ω := ωI � ωJA[T ] : P [T ] � JI

J2I2 be induced by ωI, and ωJA[T ].

Now, there is a homotopyH(T ) ∈ Q̃(P [T ]), such that η(H(T )) = (IJA[T ], Ω). Specializ-
ing at T = 0 and T = 1, we have

η(H(0)) = (K0J, ωK0J), η(H(1)) = (K1J, ωK1J).

The proof is complete. �
Now, we define addition on π0 (LO(P )).

Definition 6.3. Let A be a regular ring, containing a field k, with 1/2 ∈ k, with dimA = d. 
Let P be a projective A-module, with rank(P ) = n ≥ 2, and 2n ≥ d + 2. Let x, y ∈
π0 (LO(P )). By Moving Lemma 5.5, we can write x = [(I, ωI)], y = [(J, ωJ)], for some 
(I, ωI), (J, ωJ) ∈ LO(P ), with height(IJ) ≥ n, and I + J = A. Define

x + y := (I, ωI)+̂(J, ωJ) ∈ π0 (LO(P )) as defined in (6.1).

We establish that x + y is well defined (6.4).

Proposition 6.4. Under the setup and notations, as in (6.3), x + y is well defined.

Proof. Let x = [(I1, ωI1)], y = [(J1, ωJ1)] ∈ π0 (LO(P )), be another pair of choices, as in 
(6.3). That means, height(I1J1) ≥ n, I1 + J1 = A. We prove

(I, ωI)+̂(J, ωJ) = (I1, ωI1)+̂(J1, ωJ1).

By Moving Lemma 4.5, there is (K, ωK) ∈ LO(P ) such that x = [(K, ωK)], height(K) ≥
n and K + I1 ∩ J1 = A.

We have u, u1 ∈ Q̃(P ) such that η(u) = (I, ωI), and η(u1) = (K, ωK). Since x =
[(I, ωI)] = [(K, ωK)] ∈ π0 (LO(P )), it follows u, u1 are equivalent in Q̃(P ). By (3.2), 
there is a homotopy H(T ) ∈ Q̃(P [T ]) such that H(0) = u, and H(1) = u1. It follows 
from Lemma 6.2,

(I, ωI)+̂(J, ωJ) = (K,ωK)+̂(J, ωJ) = (J, ωJ)+̂(K,ωK)

Likewise, the above is

= (J1, ωJ1)+̂(K,ωK) = (K,ωK)+̂(J1, ωJ1) = (I1, ωI1)+̂(J1, ωJ1)

The proof is complete. �



S. Mandal, B. Mishra / Journal of Algebra 540 (2019) 168–205 193
The final statement on the binary structure on π0 (LO(P )) ∼= π0

(
Q̃(P )

)
, is as follows.

Theorem 6.5. Suppose A is a regular ring over a field k, with 1/2 ∈ k and dimA = d. 
Let P be a projective A-module with rank(P ) = n. Assume 2n ≥ d + 2. (Subsequently, 
we use the notations in π0 (LO(P )) and π0

(
Q̃(P )

)
interchangeably.) Then, the addition 

operation on π0 (LO(P )), defined in (6.3) has the following properties.

1. The addition in π0 (LO(P )) is commutative and associative. Further, the image 
e1 := [(A, 0)] ∈ π0 (LO(P )), of (0, 0, 1) ∈ Q̃(P ), acts as the additive identity in 
π0 (LO(P )). In other words, π0 (LO(P )) has a structure of an abelian monoid.

2. Let e0 := [(0, 0)] ∈ π0 (LO(P )) be the image of (0, 0, 0) ∈ Q̃(P ). Then, x +Γ̃(x) = e0, 
∀ x ∈ π0 (LO(P )), where Γ̃ is the involution map.

3. If e0 = e1 ∈ π0 (LO(P )), then π0 (LO(P )) is an abelian group, under this addition.
(Recall (4.6), if 2n ≥ d + 3, and if A is essentially smooth over an infinite perfect 
field, then e0 = e1 if and only if P ∼= Q ⊕A.)

Proof. Given x, y, z ∈ π0 (LO(P )), by the Moving Lemma 5.5, we can write

x = [(K,ωK)], y = [(I, ωI)], z = [(J, ωJ)] � K + I = K + J = I + J = A

and height(K) ≥ n, height(I) ≥ n, height(J) ≥ n. By definition (6.3),

(x + y) + z = ((K,ωK)+̂(I, ωI))+̂(J, ωJ) = x + (y + z).

and x + y = (K,ωK)+̂(I, ωI) = (I, ωI)+̂(K,ωK) = y + x.

So, the associativity and commutativity hold. It is obvious that, for all x ∈ π0 (LO(P )), 
we have x + e1 = x. So, e1 acts as the additive identity. This establishes (1).

Let x = [(K, ωK)] ∈ π0 (LO(P )), with height(K) ≥ n. There is u = (f, p, s) ∈ Q̃(P ), 
with η(u) = (K, ωK). Write η(Γ(u)) = (I1, ωI1). We can assume height(I1) ≥ n. It 
follows.

x + Γ̃(x) = ζ0(f, 0, 0) = e0. This establishes (2).

If e0 = e1, it follows from (2) that, π0 (LO(P )) has a group structure. This estab-
lishes (3).

This completes the proof. �
Remark 6.6. Use the notation as in (6.5). When e0 �= e1, the results in (6.5) describe a 
situation similar to the construction of Witt group, from the monoid of isometry classes 
of quadratic spaces.

For x, y ∈ π0 (LO(P )) define x ∼ y if x + ne0 = y + me0, for integers m, n ≥ 0. 
This is easily checked to be an equivalence relation. Let E (π0 (LO(P ))) be the set of all 
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equivalence classes. Then, E (π0 (LO(P ))) has a structure of an abelian group, induced 
by the additive structure on π0 (LO(P )). The natural map

� : π0 (LO(P )) � E (π0 (LO(P )))

is a surjective homomorphism of monoids. The identity element of E (π0 (LO(P ))) is 
�(e0) = �(e1). For x ∈ π0 (LO(P )), the additive inverse of �(x) is �(Γ̃(x)).

Clearly, if e0 = e1, then E (π0 (LO(P ))) = π0 (LO(P )).

7. The Euler class groups

Suppose A is a noetherian commutative ring with dimA = d and P is a projective 
A-module, with rank(P ) = n. In this section, in analogy to the definition of the Euler 
class groups En(A) in [6,18], we define a group E(P ), which would also be called the 
Euler class group of P . Subsequently, we compare E(P ) with π0 (LO(P )). Also, refer to 
some superfluous aspect of the definitions in [6,18], pointed out in [15]. (In the sequel, 
for a set S, the free abelian group generated by S will be denoted by Z(S)).

Definition 7.1. Suppose A is a noetherian commutative ring, with dimA = d and P is a 
projective A-module, with rank(P ) = n ≥ 0. Denote,{

LOn(P ) = {(I, ωI) ∈ LO(P ) : height(I) = n},
LOn

c (P ) = {(I, ωI) ∈ LO(P ) : V (I) is connected and height(I) = n}.

Let (I, ωI) ∈ LOn(P ) and I = ∩m
i=1Ii be a decomposition, where V (Ii) ⊆ Spec (A)

are connected. The local orientation (I, ωI) ∈ LOn(P ) induce (Ii, ωIi) ∈ LOn
c (P ), for 

i = 1, . . . , m. Denote

(I, ωI)Z =
m∑
i=1

(Ii, ωIi) ∈ Z (LOn
c (P )) .

A local orientation (I, ωI) ∈ LOn(P ) would be called global, if ωI lifts to a surjec-
tive map P � I. Let R(P ) denote the subgroup of Z (LOn

c (P )), generated by the set 
{(I, ωI)Z : (I, ωI) ∈ LOn(P ), and is global}.

Define

E(P ) = Z (LOn
c (P ))

R(P ) to be called the Euler class group of P.

Images of (I, ωI) ∈ LOn(P ) in E(P ) will be denoted by (I, ωI), which is same as the 
image of (I, ωI)Z.

Subsequently, we assume e0 = e1 ∈ π0 (LO(P )), and hence π0 (LO(P )) is a group. In 
this case, we define a homomorphism ρ : E(P ) −→ π0 (LO(P )), as follows.
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Definition 7.2. Suppose A is a regular ring over a field k, with 1/2 ∈ k and dimA = d, and 
P is a projective A-module with rank(P ) = n. Assume 2n ≥ d + 2. (Use the notations 
in (6.6)). The restriction β, of the map ζ, to LOn

c (P ), gives the following commutative 
diagram:

LOn
c (P )

β

LOn(P )
ζ

π0 (LO(P ))

We assume e0 = e1. So, π0 (LO(P )) has the structure of an abelian group. The map β
extends to a group homomorphism ρ0 : Z (LOn

c (P )) −→ π0 (LO(P )).
Now suppose (I, ωI) ∈ LOn(P ) is global. Let f : P � I be a lift of ω and I = ∩m

i=1Ii
be a decomposition of I in to connected components. Then,

(I, ω)Z =
m∑
i=1

(Ii, ωi) ∈ Z (LOn
c (P )) .

We have

ρ0 ((I, ω)Z) =
m∑
i=1

[(Ii, ωi)] = [η(f, 0, 0))] = e0 = e1

Therefore, ρ0 factors through a group homomorphism ρ : E(P ) � π0 (LO(P )). In fact, 
ρ is surjective.

Proof. We only need to give a proof that ρ is surjective. For x ∈ π0 (LO(P )), by 5.5, 
x = [(I, ωI)] for some (I, ωI) ∈ LOn(P ). Let I = ∩m

i=1Ii be a decomposition, with V (Ii)
connected and ωi : P � Ii

I2
i

be the surjective map induced by ωI . Then,

ρ0((I, ωI)Z) =
m∑
i=1

[(Ii, ωi)] = [(I, ωI)] ∈ π0 (LO(P )) .

So, ρ0 is surjective and hence so is ρ. This completes the proof. �
Theorem 7.3. Suppose k is an infinite perfect field, with 1/2 ∈ k and A is an essentially 
smooth ring over k, with dimA = d. Suppose P is a projective A-module with rank(P ) =
n and 2n ≥ d + 3. Assume P ∼= Q ⊕ A. Then, π0 (LO(P )) is an abelian group and the 
homomorphism ρ : E(P ) −→ π0 (LO(P )) is an isomorphism.

Proof. We only need to prove that ρ is injective. Let ρ(x) = 0 for some x ∈ E(P ). We can 
write x = (I, ωI), for some (I, ωI) ∈ LOn(P ). By Lemma 4.2, we have [(I, ωI)] = e1 = e0. 
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It follows from Theorem 4.3 that ωI lifts to a surjective map f : P � I. Therefore, (I, ωI)
is global. Hence x = (I, ωI) = 0. So, ρ is an isomorphism. This completes the proof. �
Corollary 7.4. Suppose k is an infinite perfect field, with 1/2 ∈ k and A is an essentially 
smooth ring over k, with dimA = d. Suppose P is a projective A-module with rank(P ) =
n and 2n ≥ d +3. Assume P ∼= Q ⊕A. Suppose (I, ωI) ∈ LOn(P ) and (I, ωI) = 0 ∈ E(P ). 
Then, ωI lifts to a surjective homomorphism P � I.

Proof. It is immediate from Theorem 7.3. �
In fact, a stronger version (7.5) of (7.4) follows, by the same arguments as in [6].

7.1. The vanishing of Euler cycles

We use the notations as in Definition 7.1. An element x ∈ E(P ) is, sometimes, referred 
to as an Euler cycle. In this subsection, we prove a less restrictive version of Corollary 7.4. 
We will follow the arguments in the proof of [6, Theorem 4.2], which mainly depends on 
the availability of Subtraction and Addition Principles. Accordingly, the following is a 
version of [6, Proposition 3.3].

Proposition 7.5. Suppose A is a noetherian commutative ring, with dimA = d and P is 
a projective A-module, with rank(P ) = n. Assume 2n ≥ d + 3 and P ∼= Q ⊕A.

Let J0, J1, J2, J3 ⊆ A be ideals, with height(Ji) ≥ n for i = 0, 1, 2, 3, J0 + J1J2 = A

and J0J1J2 + J3 = A. Also, let

α : P � J0 ∩ J1, β : P � J0 ∩ J2 be surjective maps � α⊗ A

J0
= β ⊗ A

J0
.

Further, assume that there is a surjective map

γ : P � J1 ∩ J3 � γ ⊗ A

J1
= α⊗ A

J1
.

Then, there is a surjective map

δ : P � J2 ∩ J3 � δ ⊗ A

J3
= γ ⊗ A

J3
, δ ⊗ A

J2
= β ⊗ A

J2
.

If A = R[X] is a polynomial ring over a regular ring R, over an infinite field k, same 
is true, when 2n ≥ dimA + 2.

Proof. Denote ω0 = α⊗ A
J0

= β ⊗ A
J0

, ω1 = α⊗ A
J1

= γ ⊗ A
J1

, ω2 = β ⊗ A
J2

, ω3 = γ ⊗ A
J3

. 
By Moving Lemma 4.5 there is u = (f, p, s) ∈ Q̃(P ), such that

η(u) = (J0, ω0), η(Γ(u)) = (J4, ω4), J1J2J3 + J4 = A, height(J4) ≥ n.

As is intended, f(P ) = J0 ∩ J4, with J0 + J4 = A.
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Denote g := f : P � J0J4 be the a surjective map defined by f . Then, g ⊗ A
J0

= ω0. 
By Addition Principle [3, Theorems 5.6, 5.7], applied to γ and g, there is a surjective 
map

μ : P � (J1 ∩ J3) ∩ (J0 ∩ J4) � μ⊗ A

J1 ∩ J3
= γ ⊗ A

J1 ∩ J3
= ω1 � ω3,

and μ⊗ A

J0 ∩ J4
= g ⊗ A

J0 ∩ J4
= ω0 � ω4.

It follows, μ ⊗ A
J0∩J1

= ω0 � ω1 = α ⊗ A
J0∩J1

. By Subtraction Principle [3, Theorems 
3.7, 4.11], applied to μ and α, there is a surjective map ν : P � J3 ∩ J4 such that 
ν ⊗ A

J3∩J4
= μ ⊗ A

J3∩J4
= ω3 � ω4. By Addition Principle [3, Theorems 5.6, 5.7], applied 

to ν and β, there is a surjective map

λ : P � (J0 ∩ J2) ∩ (J3 ∩ J4) � λ⊗ A

J0 ∩ J2
= β ⊗ A

J0 ∩ J2
= ω0 � ω2

and, λ⊗ A

J3 ∩ J4
= ν ⊗ A

J3 ∩ J4
= ω3 � ω4.

Now apply Subtraction Principle [3, Theorems 3.7, 4.11], to λ and g. There is a surjective 
map

δ : P � J2 ∩ J3 � δ ⊗ A

J2 ∩ J3
= λ⊗ A

J2 ∩ J3
= ω2 � ω3.

So, δ ⊗ A
J2

= ω2 and δ ⊗ A
J3

= ω3. The proof is complete. �
The following is the version of Corollary 7.1.

Theorem 7.6. Suppose A is a commutative noetherian ring with dimA = d and P is 
a projective A-module, with rank(P ) = n. Assume 2n ≥ d + 3 and P ∼= Q ⊕ A. Let 
(J, ωJ) ∈ LOn(P ) and (J, ωJ) = 0 ∈ E(P ). Then, ωJ lifts to a surjective map P � J .

If A = R[X] is a polynomial ring over a regular ring R, over an infinite field k, same 
is true when 2n ≥ dimA + 2.

Proof. Suppose (J, ωJ) ∈ LOn(P ) and (J, ωJ) = 0 ∈ E(P ). We have a set

{(Jt, ωt) : 1 ≤ t ≤ r + s}

such that

1. height(Jt) = n.
2. There are surjective maps αt : P � Jt such that αt lifts ωt.
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3. And

(J, ω)Z +
r+s∑

l=r+1

(Jt, ωt)Z =
r∑

t=1
(Jt, ωt)Z in Z (LOn

c (P )) (12)

holds in the free group Z (LOn
c (P )).

First assume that J1, J2, . . . , Jr are pairwise comaximal. In this case, J, Jr+1, . . . , Jr+s

are pairwise comaximal. Write

J ′ = ∩r+s
l=r+1Jt, J ′′ = ∩r

t=1Jt. Then J ∩ J ′ = J ′′.

Further, by Addition Principle [3, Theorems 5.6, 5.7], there are surjective homomor-
phisms α′ : P � J ′ and α′′ : P � J ′′ such that

(J ′, ω′)Z =
r+s∑

t=r+1
(Jt, ωt)Z, (J ′′, ω′′)Z =

r+s∑
t=r+1

(Jt, ωt)Z in Z (LOn
c (P ))

where ω′ = α′⊗A/J ′ and ω′′ = α′′⊗A/J ′′. So, by Subtraction Principle [3, Theorems 3.7, 
4.11], there is a surjective homomorphism α : P � J such that α⊗A/J = α′′⊗A/J = ω.

Now, we consider that J1, J2, . . . , Jr are not, necessarily, pairwise comaximal. Given 
an Equation, as in (12), we would associate an integer n(Eqn−12) ≥ 0, as follows. Let 
Si be the set of all connected components of Ji and S = ∪r

i=1Si. For K ∈ S, let n(K) +1
be the cardinality of the set {t : K + Jt �= A}. Let n(Eqn−12) =

∑
K∈S n(K). We have 

n(Eqn−12) = 0 if and only if J1, J2, . . . , Jr are comaximal.
Now, assume n(Eqn−12) ≥ 1. Therefor, n(K) ≥ 1 for some K ∈ S. We can assume 

K ∈ S1 and K + J2 �= A. So, ∃ K̃ a connected component of J2 such that K + K̃ �= A.
First, assume K �= K̃. Both K, K̃ cannot be connected component of J . (components 

add up to A.) Without loss of generality, assume K is not a connected component of J . 
Using Eqn-12, it follows that there is an integer l, with r+1 ≤ l ≤ r+s, such that (1) K
is a connected component of Jl, (2) αl⊗A/K = α1⊗A/K. Assume l = r+1 and denote 
ωK := αl ⊗A/K = α1 ⊗A/K : P � K/K2. We write J1 = K ∩K1 and Jr+1 = K ∩K2
where K +K1 = A = K +K2. By Moving Lemma 4.5, applied to ωK1 := α1 ⊗ A

K1
, there 

is an ideal K3 such that (3) height(K3) ≥ n, (4) K3 is comaximal to J, Jj , ∀1 ≤ j ≤ r+s, 
(5) there is a surjective map β : P � K3 ∩K1 such that α1 ⊗A/K1 = β ⊗A/K1.

We have three surjective maps:

α1 : P � K ∩K1, αr+1 : P � K ∩K2 β : P � K1 ∩K3

By Proposition 7.5, there is a surjective map

βr+1 : P � K3 ∩K2 � αr+1 ⊗
A = βr+1 ⊗

A
, β ⊗ A = βr+1 ⊗

A
.

K2 K2 K3 K3
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So, we have

(J, ω)Z +
(

˜Jr+1, ˜βr+1

)
Z

+
r+s∑

l=r+2

(Jl, ωl)Z =
(
J̃1, β̃1

)
Z

+
r∑

l=2

(Jl, ωl)Z, (13)

where ˜Jr+1 = K3 ∩ K2 and J̃1 = K3 ∩ K1. (K is removed from both sides and K3 is 
inserted.) It is clear n(Eqn−13) < n(Eqn−12). Therefore, by induction, the Equation-13
would reduce to an Equation (*), so that n(∗) = 0.

Now assume K = K̃. Let ωK = α1 ⊗ A/K. Therefore, K = K̃ is a component of 
J2. We denote ω̃K = α2 ⊗ A/K. Using Equation-12, it follows that either (K, ωK) or 
(K, ω̃K) is a summand of 

∑r+s
t=r+1(Jt, ωt)Z. Without loss of generality, we assume that 

(K, ωK) is a summand of (Jr+1, ωr+1)Z and complete the induction exactly in the same 
manner, as above. This completes the proof. �
7.2. Comparison with Chow groups

In this section, we exploit the work of N. Mohan Kumar and M. P. Murthy [25,24] to 
compare the Euler class group E(P ) with the Chow group of zero cycles CHd(A), when 
A is a smooth affine algebra over an algebraically closed field and n = rank(P ) = d =
dimA.

Definition 7.7. Let A be a Cohen Macaulay ring, with dimA = d. Let K0(A) denote the 
Grothendieck group of projective A-modules. Let F0K0(A) =

{[
A

I

]
∈ K0(A) : I is a locally complete intersection ideal, with height(I) = d

}
.

It was established in [14, Theorem 1.1] that F0K0(A) is a subgroup of K0(A).
Let Q be a projective A-module with rank(Q) = d − 1, and P = Q ⊕A. Then, there 

is a surjective homomorphism

ϕ : E(P ) −→ F0K0(A) sending [(I, ω)] �→
[
A

I

]

Proof. Since A is Cohen Macaulay, for (I, ω) ∈ LOd(P ), I is a locally complete inter-
section ideal. Now, consider the map LOd

c(P ) −→ F0K0(A), sending (I, ω) �→
[
A
I

]
. This 

map extends to a homomorphism ϕ0 : Z 
(
LOd

c(P )
)

−→ F0K0(A). Now, if (I, ω) is a 
global orientation, then ω lifts to a surjective map f : P � I. Since P = Q ⊕A, it follows

ϕ0(I, ω) =
[
A

I

]
=

d∑
(−1)r [∧rP ] = 0.
r=0
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Therefore, ϕ0 factors through a map ϕ : E(P ) −→ F0K0(A). For, 
[
A
I

]
∈ F0K0(A), there 

is an isomorphism P
IP

∼−→ I
I2 , which gives rise to a surjective map ω : P � I

I2 . Therefore, 
ϕ([(I, ω)]) =

[
A
I

]
. So, ϕ is surjective.

Now, we assume that the base field k is algebraically closed, and use [19].

Corollary 7.8. Suppose A is a reduced affine algebra over an algebraically closed field k, 
with dimA = d ≥ 2. Assume A is Cohen Macaulay and that F0K0(A) has no (d − 1)!
torsion. Let Q be a projective A-module with rank(Q) = d − 1, and P = Q ⊕ A. Then, 
the map ϕ : E(P ) −→ F0K0(A) in (7.7) is an isomorphism.

Proof. By Swan’s Bertini theorem [25, pp. 586], it follows that F0K0(A) coincides with 
the usual subgroup F dK0(A) (see [8,24,19]), which is generated by the cycles of A/m, 
where m runs through the smooth maximal ideals of height d. We only need to prove that 
ϕ is injective. Suppose ϕ(x) = 0 for some x ∈ E(P ). By Moving Lemma, we can write 
x = [(I, ω)], for some (I, ω) ∈ LOd(A). Therefore ϕ(x) =

[
A
I

]
= 0. Since P = Q ⊕ A, 

the top Chern class Cd(P ∗) =
∑d

r=0(−1)r[∧rP ] = 0 ∈ F dK0(A) (see [24, Definition 
3.5]). Therefore, Cd(P ∗) =

[
A
I

]
∈ F dK0(A). By [19, Theorem 2.1], it follows ω lifts 

to surjective map P � I. Therefore, x = [(I, ω)] = 0. This establishes that ϕ is an 
isomorphism. The proof is complete. �

The condition in (7.8) that F0K0(A) has no (d − 1)! torsion is a minor condition, 
due to the results of Levine [10] and Srinivas [29] (see [24, Lemma 2.10, Theorem 2.14]). 
Summarizing all the above, with smoothness hypotheses, we have the following.

Corollary 7.9. Suppose A is smooth affine algebra over an algebraically closed field k, 
with 1/2 ∈ k and dimA = d ≥ 3. Let Q be a projective A-module with rank(Q) = d − 1, 
and P = Q ⊕A. Then, the maps

π0 (LO(P )) E(P )∼ ∼
F0K0(A) CHd(A)∼

are isomorphisms, where CHd(A) denotes the Chow group of codimension d cycles.

Proof. The last isomorphism follows from Riemann-Roch theorem, because F0K0(A) is 
divisible and does not have (d −1)! torsion [24, Lemma 2.10, Theorem 2.14]. The second 
isomorphism follows from (7.8), while the first isomorphism follows from (7.3). The proof 
is complete. �
7.3. Some closing remarks

Before we close the main body of this article, we have the following remarks.

Remark 7.10. For the following comments, assume A is an essentially smooth affine rings, 
over an infinite perfect field k, with 1/2 ∈ k and dimA = d ≥ 3, and X = Spec (A).
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1. The structure theorem [4, Theorem 4.21] illustrates that these monoids π0

(
Q̃(P )

)
can assume a wide range of values.

2. Assume P does not have a unimodular element (see [26]). Then, there is no ideal 
preserving and homotopy preserving map LO(An) −→ LO(P ).
(a) However, in a subsequent article [16], we prove that when rank(P ) = d, then 

π0 (LO(P )) ∼= π0
(
LO(ΛdP ⊕Ad−1)

)
. Since the latter one is a group, π0 (LO(P ))

is a group. In particular, for π0 (LO(P )) to be a group, it is not necessary that 
P splits as P ∼= Q ⊕A.

(b) Open Problem: It remains open, whether π0 (LO(P )) is always a group or not, 
whenever 2n ≥ d + 3.

(c) In [16], we establish a natural additive map π0 (LO(P )) −→ CHn(A), where 
CHn(A) denotes the Chow group of codimension n cycles.

3. If π0 (LO(P )) is a group and e0 �= e1, then the natural map LO(P ) −→
π0 (LO(P )) (see (7.2)), does not factor through a group homomorphism, from E(P )
to π0 (LO(P )). This is because the global orientations, map to e0.

4. Note (see [8]), that the total Chern class C(P ) = 1 +C1(P ) +· · ·+Cn(P ) takes value in 
the total Chow group CH(X) = ⊕d

i=1CHi(X), which is an invariant of X. However, 
the homotopy obstruction group π0 (LO(P )), which houses the Nori class ε(P ), is an 
invariant of P . This does not come as a surprise, because when rank(P ) = n = d, 
the Euler class of P (as in [7]) takes value in En(A, ∧dP ) = E(∧dP ⊕Ad−1), which 
is dependent on P .

Appendix A. The motivic interpretation

In this section, we attempt to give a motivic interpretation to the homotopy obstruc-
tion sets, in analogy to the case when P = An [2,23]. Four descriptions for the same was 
given in section 2, assuming 1/2 ∈ A. For our purpose, in this section, it would be best 
to work with Q̃′(P ) and π0

(
Q̃′(P )

)
. We assume 1/2 ∈ A in this section. Recall, with

B2n+1 = k[X1, . . . , Xn;Y1, . . . , Yn, Z]
(
∑n

i=1 XiYi + Z2 − 1)
, and Q′

2n = Spec (B2n+1) (A.1)

[Spec (A) , Q′
2n]Sch ∼=

Q′
2n(A) ∼=

{
(f1, . . . , fn; g1, . . . , gn, z) ∈ A2n+1 :

n∑
i=1

figi + z2 = 1
}
.

Also recall, π0 (Q′
2n) (A) ∼= [Q′

2n, Spec (A)]A1 where the right hand side denotes the set of 
all morphisms in the A1-homotopy category [23, Chapter 8] (also see [1, Theorem 1.1.1]). 
A similar interpretation for Q̃′(P ) and π0

(
Q̃′(P )

)
would be desirable.

We follow Swan [30, §1, 2]. Suppose Q is a projective A-module. Let S(Q∗) =⊕
i≥0 Si(Q∗) denote the symmetric algebra of Q∗. Let Quad(Q) = {ϕ ∈ Hom(Q, Q∗) :



202 S. Mandal, B. Mishra / Journal of Algebra 540 (2019) 168–205
ϕ∗ = ϕ} denote the A-module of all the quadratic forms on Q. Given ϕ ∈ Quad(Q), 
let B(ϕ) ∈ Hom(Q ⊗Q, A) ∼= Q∗ ⊗Q∗ be the corresponding bilinear map. In fact, this 
association ϕ �→ B(ϕ) induces a bijection Quad(Q) ∼−→ S2(Q∗) (see [30, § 2]).

Since A is commutative, all maps f : Q∗ −→ A extends to a map S(Q∗) −→ A. So, 
we have the commutative diagram of bijections:

Q
ev

∼

λ

Hom(Q∗, A)

�

Hom(S(Q∗), A)

For x ∈ Q, f, g ∈ Q∗ 〈λ(x), f〉 = f(x) 〈λ(x), fg〉 = f(x)g(x)

For a bilinear map β ∈ Hom(Q ⊗Q, A) = Q∗⊗Q∗, we can write β =
∑

fi⊗ gi for some 
fi, gi ∈ Q∗ and

〈λ(x), β〉 =
∑

fi(x)gi(x) = β(x, x).

Fix a quadratic form ϕ : Q −→ Q∗ and B(ϕ) : Q ⊗ Q −→ A be the corresponding 
bilinear map. More precisely, B(ϕ)(x, y) = ϕ(x)(y). As usual, define q : Q −→ A by 
q(x) = B(x, x). Then,

for x ∈ Q 〈λ(x), B(ϕ)〉 = B(ϕ)(x, x) = q(x).

We introduce some notations.

Notations A.1. Suppose A is a commutative noetherian ring, with 1/2 ∈ A, and X =
Spec (A). For a quadratic space (Q, ϕ) over A, denote

S(ϕ) = {x ∈ Q : q(x) = 1}, B(ϕ) = S(Q∗)
(B(ϕ) − 1) and X (ϕ) = Spec (B(ϕ)) .

Proposition A.2. With notations as in (A.1), the following maps

[X,X (ϕ)]SchA

∼
Hom (B(ϕ), A) S(ϕ)∼ are bijections,

where [−, −]SchA
denotes the set of morphisms in SchA.

Proof. Follows from above discussions. �
Remark A.3. Use the same notations, as in (A.1). Consider the presheaf

[−,X (ϕ)]Sch : SchA −→ Sets sending Y �→ [Y,X (ϕ)]Sch
A
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In fact, for affine schemes Y = Spec (B) ∈ SchA, the following maps

[Y,X (ϕ)]SchA

∼
Hom (B(ϕ), B) S (ϕ⊗B)∼ are bijections.

One can make a similar statement for any scheme Y ∈ SchA. Let f : Y −→ X be the 
structure map, and f∗ would denote the pullback. Redefine⎧⎪⎨⎪⎩

S(f∗q) = {x ∈ Γ(Y, f∗Q) : f∗q(x) = B(f∗ϕ)(x, x) = 1}
B(f∗ϕ) = S(f∗Q∗)

(B(f∗ϕ)−1)OY

X (f∗ϕ) = Spec (B(f∗ϕ)) .

Then, the following maps

[Y,X (ϕ)]SchA

∼
Hom (B(ϕ),Γ(Y,OY )) S (f∗ϕ)∼

are bijections. (see [9, II, Ex. 2.4]).

Corresponding to the notations (A.1), we introduce the following notations.

Notations A.4. Let (Q(P ), q) = H(P ) ⊥ A be as in (2.1). Denote the underly-
ing projective module of (Q(P ), q) by the same notation Q(P ) := P ∗ ⊕ P ⊕ A. Let 
B : Q(P ) ×Q(P ) −→ A be the corresponding bilinear form. Define

B(P ) = S(P ⊕ P ∗ ⊕A)
(B − 1) , and denote Q′

P := Spec (B(P )) .

Corollary A.5. Use the notations, as in (A.4). Then, for Y ∈ SchA and the structure 
map f : Y −→ X, the following maps{

Q̃′(P ) = S(q) ∼−→ [X,Q′
P ]SchA

Q̃′(f∗P ) = S(f∗q) ∼−→ [Y,Q′
P ]SchA

are bijections.

Consequently, the association

Y �→ Q̃′(f∗P ) defines a presheaf SchA −→ Sets.

Therefore, one can define

π0(Q̃(P )) : SchA −→ Sets as a presheaf.

Proof. Follows from (A.2). This completes the proof. �
In analogy to the free case P = An, we raise the following question.
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Question A.6. Suppose k is an infinite perfect field, with 1/2 ∈ k and A is an essentially 
smooth ring over k, with dimA = d. Write X = Spec (A). Suppose P is a projective 
A-module with rank(P ) = n. The question remains, whether a motivic interpretation 
can be given to the pre sheaf π0(Q̃(P )). In particular, whether

π0(Q̃(P ))(A) ∼= [X,QP ]H(A)?

Here H(A) denotes the A1-homotopy category of smooth schemes over X = Spec (A), 
and [X,QP ]H(A) denotes the set of all maps X −→ QP in H(A).

If P is free, then the question has an affirmative answer, when A is an infinite perfect 
field (see [23, Remark 8.10]).
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