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1. Introduction

Let A be a reduced affine algebra of dimension n over an algebraically
closed field k. Assume that F" KA has no (n — 1)! torsion. Let P be
a projective A-module of rank n and I be an ideal of A. In [5], it was
shown that there is a surjective map f : P — A if and only if the n-th
Chern class C,(P) = 0 (see [5]). We consider here the obstruction for
the existence of a surjective map f : P — I. In fact, we here start with
a surjective map f : P — I/I* and try to find precise obstruction for
“extending” f to asurjective map f : P — I.In case I is a local complete
intersection ideal of height n, we show (see Theorem 2.1) that such an
extension f : P — I exists if and only if C,,(P") = cycle associated
to (A/I), where P* = Hom(P, A). For example (see Corollary 2.2), it
follows immediately from this result (Theorem 2.1) that if I is a complete
intersection ideal of height n, then any set of n-generators of I/17 lifts

to a set of n-generators of 1.
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We also give examples (see Example 2.3, Example 2.4) that this
result (Corollary 2.2) fails, when k is not algebraically closed or when [

is not a local complete intersection of height n.

When 7 is any ideal of A, we give precise obstruction for existence
of a surjective map from P —» I, in terms of Segre class of I (see Theo-
rem 2.6). The proofs of Theorem 2.1 and Theorem 2.6 are based on the
methods of [5].

In Section 3, we consider the case k = IF'q and show that any sur-
jective map f : P —» 1/12 extends to a surjective map f : P — I. Here

the proof uses some of the techniques from [10].

We fix some notations and terminology before we close this sec-
tion. For a reduced affine algebra A of dimension n over an algebraically
closed field, we denote by Ky A the Grothendieck group of projective A-
modules, which is in fact, equal to the Grothendieck group of finitely gen-
erated A-modules of finite projective dimension. We denote by F" KA,
the subgroup of KyA, generated by the classes (A/m), where m is a
smooth maximal ideal of height n. For a projective A-module P of rank n
we define the n-th Chern class of P = C,(P) = (—1)" S (—=1)*[A*P].
For intersection theory used here, we refer to [4]. For other unexplained

definitions and notations, we refer to [5].

The authors would like thank Institute of Mathematical Sciences,
SPIC Science Foundation, Madras and the University of Chicago for

support. Thanks are also due to M. V. Nori for many useful discussions.

2. Affine Algebras over Algebraically Closed Fields

Theorem 2.1. Let A be a reduced affine algebra of dimension n > 2
over an algebraically close field k. Let P be a projective A-module of
rank n and I be a local complete intersection ideal of height n in A.
Let f : P/IP —» I/I? be a surjective map. Suppose that F" Ky A has no
(n — 1)! torsion. Then there exists a surjective map f : P — I such that
f® A/I = f if and only if C,,(P*) = (A/I).
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Proof. 1t is clear that if there is a surjective map f : P —» I then
Cn(P*) = (A/I). So, we need only to prove if part of the theorem.

By Bertini’s theorem [11, 5], choose a “general lift” g : P — I of
f such that @ A/T = f and g(P) = IJ with T+ J = A and J is a
local complete intersection ideal of height n. Then (A/I) = C,,(P*) =
(A/I1J) = (A/I)+ (A/J) and hence (A/J) = 0. By [5], J is a complete

intersection ideal.

So, we have the following two exact sequences:
0K - A"2% 7.0 and 0—L—PZT1J—0.

Let @1, ¢2,..., ¢, be the minimal prime ideal of A and for, 1 <1 < r,

let m; be a maximal ideal that contains g, and m; + IJ = A. Write

J" = [ m;. Now the inclusion IJ — J induces an isomorphism IJ &
=1

AJJT ~ J® A/JJ" of projective A/JJ'-modules. Hence there is a
isomorphism 7 : P/JJ'P — A™JJ' A™ such that the diagram

(A/JINY — T A/JT
dl [
P/JIP — 1J@ A/JT
commutes. Let 7: P — A" be a lift of . Then A™ = n(P) + JJ'A™. So,
there is an a in A such that (a,JJ’) = A and a(cokernel ) = 0. Note

that a is a non-zero divisor. Since we have surjective map A" /n(P) —
J/IJ = A/I, note that a is in I. We have the following commutative

diagram:
0 K A L ] — 0
[
0 M P 25 1] — 0.

By tensoring the top row by A/(a), we get the exact sequence

0— K/aK — A" /aA" — J/aJ ~ A/(a) — O.
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Thus K/aK is stably free A/(a)-module of rank n — 1 and hence free
by [9). Let z;,...,2,_; in K be such that their images in K/aK form
a base of K/aK.

Choose ,, in A™ such that i(z,) = b = 1 modulo (a). Modifying b
by an element of Ja, we may assume that b is a non-zero divisor.

Let “bar” denote going “modulo (a)”. Thus Z;, Z,,...,Z, is a base
for A™. Let p be the matrix [z,,...,z,] in M, (A). Without loss, we
assume that det i = 1.

We have A" = 37 Az, + a®A” = 37 | Az, + an(P). We also

have the exact sequences

=(m,an)

0—>Q—>AH@P—¢—>A — 0

and
(3,
0—-P——A" P
The map ¢ = (u,an) sends (Ai,..., A, p) to Do | Ajz; + an(p). Since
rank of P is bigger than or equal to n, by [9], there exist a 7 in SL{A"&P)

n,0
(1an0) A" = 0.

such that (i, an) o7 = (I4n,0) (See also [8]). Let 7 = (a ?) where
Y

a € End(A™), 8 € Hom(P,A"), v € Hom(A",P), § € End(P). It
follows, po + any = I4» and pfB + and = 0.

Again, let “bar” denote going “modulo a”. Hence, we have icx = I 5=
and i = 0. Hence, det& = 1 and 3 = 0. Therefore, det§ = det 7 = 1.

Let 6 : Q — P denote the restriction of the projection map A" @
P — Pandlet f': P — IJ be the map f' = gf7,, where 7, : P=2Q is

0
the isomorphism induced by 7. In fact 7, (p) = 'r( ) = (?((p))) for p in
P p

P. Thus f' = ¢é.

we now show that image of f' = bI or equivalently, we prove that
Im(gf) = bI. For (A\1,...,A,,p) in Q, we have »_._, \z; +an(p) = 0.
Hence

0 = k(M 2, +an(p)) = A,b + ag(p).
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Since Aa + Ab = A, g(p) € I N (b) = bI. Thus Im(f") C bI. Now
consider Ab, with A in 7. There is a p in P, with hn(p) = g(p) = \b. So,
h(—=Az, +n{p)) = 0. Hence —Az, + n(p) € K C Z?’:_ll Az, + aA" C
2:.;_11 Az; + n(P). Thus, we have —Az,, + n(p) = 207 Nz + n(p’)
for some p’ in P and Aq,...,A,_; in A. Note that g(p') = hn(p’) = 0.
Clearly, z = (—=Aja,...,—A,_1a,—Aa,p—p’) € Q and hence A\b = g(p) =
g0(z) € Im(f’). This shows that Tm(f’) = Ib.

Let f” denote the composite map

orLmar
Let “~” denote going “modulo I”. For some fixed base of P, we have
6 is in SLH(Z) = E,L(;{). By [1], there is an automorphism ¢ & Aut(P)
such that 55: 5. Set f=f"¢""1 Then
f=fé" =g =g=".
This completes the proof of Theorem 2.1. L]

Taking I to be a complete intersection ideal of height n and P = A"

in Theorem 2.1, we get the following.

Corollary 2.2. Let A be a reduced affine algebra of dimension n over
an algebraically closed field k. Assume F"KyA has no (n — 1)! torsion.
Let I be a complete intersection ideal of height n. Then any base f, fo,
cooy fn of I/T? can be lifted to a set of generators of I.

The following example shows that Corollary 2.2 fails if k is not
algebraically closed.

Example 2.3. Let A = R|z,y, z] be the coordinate ring of the real
two sphere 2° +y* 4+ 2% = 1. Let T = (z, y) in A. The generators (—g, z)
of 1/I? does not lift to generators of I.

Proof. Let P = AB/(CE, y, z) be the projective A-module corresponding
to the tangent bundle of the real two sphere. Suppose, if possible, I =
(f,g) where f = —¢ and g = zz in I/I*. (Here “bar” denotes going

“modulo I”}.
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Let n,n',n" in Ext'(I, A) =~ A/I, respectively be the following ex-
tensions:

(:) Ag (-y,m)A

—g
n:0— AQAZMIH 0

n:0— A I—0

n' 10— aLpiio
where ¢ is the map induced by the map A® — I that sends the stan-
dard base e,, e,, €3, respectively, to —y,z,0 and 9 is defined by (1) =

image(—ze3) in P.

For a suitable o € End(A?), we have the commutative diagram:

0 A a2 2 g 0
g B [
0 . A . A2 (f9) 7 0
where d = det{a). By tensoring with A/I, we get the commutative
diagram
A > J/I* = (—g,2)A
|= n
A? —— [/I* = (-7, 7x) A,
Hence

i (1 0
a =
0 z
and det & = Z. Thus ' = zn in Ext'(I, A).

On the other hand, we also have the commutative diagram

n:0 A A? I » 0
l= e
n':0 A P 1 0

where 3 is induced by the inclusion A% < A® that sends (a, b) to (a, b, 0).
Hence n” = zp = 1 in Ext*(I, A). So, P ~ A% which contradicts the
fact that P is not free. This completes the proof of Example 2.3. L[]
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Following Example 2.4 shows that Corollary 2.2 fails for ideals which

are not local complete intersection of height n.

Example 2.4. Let A = C[X,Y] and let f be in A be such that
SK,(A/(f)) # 0; for example, take f = X°® +Y® — 1 [7]. Let I = Af.
Then I/I* = Af/Af* =~ A/(f). Suppose every two generators of I/I*
can be lifted to two generators of 1.

It follows from the commutative diagram

A — AJI

flt fiz
I — I/I?

that any unimodular vector of length two over A/(f) can be lifted
to a unimodular vector of A of length two. This would imply that
SK,(A/{f)) =0, which is a contradiction. This completes the proof of
Example 2.4. (]

Let A be as in Theorem 2.1 and further assume that A is a regular
domain of dimension n. Let P be a projective A-module of rank n and [
be any ideal. Let f: P — I/I? be a surjective map. Theorem 2.6 gives
a necessary and sufficient condition for the existence of a surjective map
f: P - 1. Although, as the Example 2.4 suggests, we may not be able
to lift f to a surjective map f: P —» 1.

Before stating Theorem 2.6, we fix some notation.

Let A be aregular affine algebra of dimension n over an algebraically
closed field k. Let P be a projective A-module of rank n and I be an
ideal of A. Let X = Spec A and = : X — X be the blow up of the ideal
I and 7O = O5(1). Set

s(P,1) = 32 (=1)'Coi(P)m, (C1(O5 (1)) N X).

Then we have the following lemma:

Lemma 2.5. With notations as above, let f € P* = Hom(P, A) with
f(P)=1-J, where J+ 1 = A and J is a local complete intersection
ideal of height n or J = A, then ((P,I) = cycle(A/J). In particular, if
f is surjective onto I, then ((P,I) = 0.
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Proof. We have 7" f : 7" P — JO (1) is surjective. Hence, we get a
surjective map ¢*(P)(—1) — JO;. By [4],

ke

Co(m*(P)(~1) N X =Y (=1)'C,i4(x" P) N (C1(O5 (1)) N X
i=0
= cycle (O 5/JO3).
Since V(I) N V(J) = @, applying 7*, to this equation above and using
projection formula, we have ((P,I) = cycle (A/J). This completes the
proof of Lemma 2.5, ]

Now we state Theorem 2.6.

Theorem 2.6. Let A be a regular affine algebra of dimension n over
an algebraically closed field k. Let P be a projective A-module of rank

n and I an ideal in A. Then the following conditions are equivalent:
(1) There is a surjective map f : P — I onto I.

(2) There is a surjective map f : P — I/I? and ((P,I) = 0.

Proof. Condition (1) implies condition (2) follows from Lemma 2.5.
So, we prove (2) implies (1).

Take a general lift f : P — I of f: P — I/I°. Then f(P) = IJ,
where J is local complete intersection ideal of height n with I + J = A.
Hence, by Lemma 2.5, 0 = ((P,I) = cycle(A/J). By ((3.4), [5]), J is
a complete intersection ideal. Hence by ((1.6), [5]), there is a surjective
map f': P —» I. This completes the proof of Theorem 2.6. []

3. Affine Algebras over F_’p

In this section we prove a stronger version (Theorem 3.2) of Theorems
2.1 and 2.6 when the ground filed is Fp (p is a prime number).

We begin with the following lemma.

Lemma 3.1. (See[10]) Let A be an affine algebra of dimension n >
1, over Fp. Let J be a complete intersection ideal of height n. Suppose
J = (ay,...,a,,1)A. Then there exists A = (Ay,..., A1) in A" such

that X is unimodular and E?:ll A;a; = 0.
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Proof. We prove by induction on n. We also note that we may modify

the generators (ay,...,a,,) of J by any element in GL, ,(A).

for n = 1, we have J = (h) = (a;,a;), where k is a non-zero divisor.
Hence a; = —A1h and ay, = Ash for some Ay, A, in A. It follows that
(A1, A2) is unimodular and Aya; + A;a, = 0. Hence the proof in the case
n = 1 is complete by taking A = (A,, A;).

Assume now n > 2 and J = (hy,...,h,). We assume that h; and
b, are non-zero divisors in A. Let “bar” denote going “modulo (h,,)”.
We have J = (hy,...,hy_1) = (@1,a2,...,8,41). By [2, 3], there are
B2, ..oy fny1 in A such that J = (@y + fig@y, ..., @, 0y, 161). Hence
there exists £ in E,,(A) such that (@;,...,8,41)5 = (h1, a4 flpdy, . ..,
Qpy1 + fpy101). Lifting £ to e in £, ,{A) and replacing (ay, ..., an11)
by (a1,...,a,,1)e, we may assume that a; = hy + ph, for some p € A.
Modifying h; + ph,, by and element of b, (as, ..., a, 1), we may assume
that a; = hy 4+ ph,, is not a zero divisor. Replacing h; be hy + ph,,, we
may assume a; = h;.

Now let “~” denote going “modulo hy”. So, J= (ﬁg, . ,’l;n) = (aq,

...,any1). Hence by induction hypothesis there exists (Xz, ey Anal)

unimodular in A such that }:?__T; Xod; = 0.

o~

Since by [12], stable range of A < n, (’Xz, ...y Any1) can be lifted
to a unimodular vector (Ag,..., A, 1) in A", Hence we have Aja; +

Asag + -+ A 1a,41 = 0 for some Ay in A. This completes the proof
of Lemma 3.1. ]

Theorem 3.2. Let A be a reduced affine Fp-algebra of dimension n.

Suppose
(i) n>3or
(il) n =2 and A is a regular afline domain.

Let P be a projective A-module of rank n and I any ideal of A. Then
any surjective map f : P — I/I* lifts to a surjective map f: P — I.
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Proof. Let f': P — I be a general lift of f. Then as before, f'(P) =
I.J with I+ J = A and J is a product of distinct smooth maximal ideals
of height n. The hypothesis (i) and (ii) imply that (see 6]) F"KyA =0
and also that J is a complete intersection ideal. Since F"KyA = 0, we
have P ~ P’ & Ap,, with rank P’ = n— 1. As f’ induces an isomorphism
of P/JP = J/J?, there exist py,...,pn_1 in P’ such that f'(py),. ..,
7'(p,) is a base for J modulo J?.

Let

w P1AP2A-Apn
_

N = O(piApsA--- Ap,) = Image {A"P A},
Let V(Z) be the singular locus of Spec A. We have J + IZAN = A.

Case 1. n > 3.

By Swan’s Bertini’s theorem (see for example, (2.4), [5]) there exists an
h in J such that A — 1 is in JZN and A/Ah is smooth of dimension
n—12>2.

Let “bar” denote going “modulo (h)”. Then, since FP 1K A =0
and J is a complete intersection of height n — 1. Also P is A-free, with
base Py,...,pn and f(P) = J.

So, by Lemma 3.1 there exists an unimodular (A1y---1A,) € A"
such that 37, A\ f'(F;) = 0. Since > 7, \;7; is unimodular in P, by -
6], there exists a p’ in P unimodular with " = Y7 X;p;- Thus we
have P = P" @ Ap' and f'(5) = 0 ie. f'(p') = ah, for some a in A.
Since J is a smooth ideal of height n = rank P, it is easy to see that
Aa+J = A. Since ah = f'(p') € IJ and h — 1 € I, it follows that a € I.

Since I/f'(P)=1/1J ~ A/J, it follows that I = f(P) + Aa.

Define f : P — I by setting f|pr = f'|pr and f(p') = a. Then f
is surjective and since h — 1 € I, it is clear that f is a lift of f. This
completes the proof of Case 1.

Case 2. n=2.

Let J = (hq, ky) and let “bar” denote going “modulo NZ”. Then (hy, hs)
e A? is unimodular. By [12] or [6], there is (h&, h’z) € A% unimodular such
that A = k; for ¢ = 1,2. Let o € SLyA be such that (RY, hy)a = (0,1).
Replacing (hy, hy) by (hy, ho)a, we assume hy =1.
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Let “~” denote going “modulo (h,)”. Then P is A-free with base

1.5, and J = (k) = (f'(51), f'(72)). By Lemma 3.1, choose (Ag, Ay) €
A? unimodular with Ay f/(51) + Ao f'(B,) = 0. Now, we can complete the

proof as in Case 1, by lifting Xlﬁl + szz to an unimodular element p’

in P. This completes the proof of Theorem 3.2. (]
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