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Chapter 0

Introduction

In these notes on Projective Modules and Complete Intersections we present an
account of the developments in research on this subject since the proof of the
Conjecture of Serre due to Quillen and Suslin.

After two preliminary chapters, we start with the proof of Serre’s Conjecture
and some associated results of Quillen and Suslin in Chapter 3.

Chapter 4 includes the Basic Element Theory of Eisenbud and Evans and
the proofs of the Eisenbud-Evans Conjectures. Our treatment of the Basic el-
ement theory incorporates the idea of generalized dimension functions due to
Plumstead.

In Chapter 5, we discuss the theory of matrices that we need in the later
chapters. We tried to avoid the theory of elementary matrices in these notes.
Instead, we talk about the Isotopy Subgroup of the General Linear Group in this
chapter.

The theory of Complete Intersections is discussed in Chapter 6. Among the
theorems in this chapter are

1. the theorem of Eisenbud and Evans on the number of set theoretic gener-
ators of ideals in polynomial rings,

2. the theorem of Ferrand-Szpiro,

3. the theorem of Boratynski on the number of set theoretic generators of
ideals in polynomial rings over fields,

4. the theorem of Ferrand-Szpiro-Mohan Kumar on the local complete inter-
section curves in affine spaces,

5. the theorem of Cowsik-Nori on curves in affine spaces.

To prove the theorem of Cowsik-Nori, we also give a complete proof of the fact
that a curve in an affine space over a perfect field is integral and birational to
its projection to an affine two subspace, after a change of variables.

1



2 CHAPTER 0. INTRODUCTION

In Chapter 7, we discuss the theory of Projective modules over polynomial
rings in several variables over noetherian commutative rings. The techniques
used in this chapter are almost entirely due to Lindel. Among the theorems in
this chapter are

1. Lindel’s Theorem on Bass-Quillen Conjecture,

2. the theorem of Bhatwadekar-Roy on the existence of Unimodular elements
in projective modules,

3. Lindel’s Theorem on the transitivity of the action of the group of transvec-
tions on the set of unimodular elements of a projective module.

A large portion of these notes evolved out of class notes for a course on this
topic that I taught some years ago at the University of Kansas. The students in
this class did not have any previous serious exposure to commutative algebra.
My approach while conducting this course was to

a) state and explain results and proofs that have a potential to excite the
students;

b) skip those proofs that may become technical;

c) state, explain and use results from commutative algebra as and when
needed.

With this approach, I was able to cover the materials in Chapter 1-6. Among
the theorems that I stated in this course without proof were the theorems of
Eisenbud-Evans (Theorem 4.1.1), Plumstead (Theorem 4.3.1 and 4.3.2) and
Sathaye-Mohan Kumar(Theorem 4.3.3). On the other hand, I proved the theo-
rem of Ferrand-Szpiro (Theorem 6.1.3). I finished the course with the proof of
the theorem of Ferrand-Szpiro-Mohan Kumar(Theorem 6.2.5) that

a locally complete intersection ideal of height n − 1 in a polynomial ring
k[X1, . . . , Xn] over a field k is set theoretically generated by n − 1 polynomials,
and with the statement of the Cowsik-Nori theorem(Theorem 6.3.1) that

any ideal of pure height n− 1 in a polynomial ring k[X1, . . . , Xn] over a field
k of positive characteristic is set theoretically generated by n− 1 elements.



Chapter 1

Preliminaries

In this chapter we shall put together some notations, some terminologies and
preliminaries from commutative algebra that we will be using throughout these
notes.

1.1 Localization

Suppose R is a commutative ring. For a subset S of R, we say that S is a
multiplicative subset of R if 1 is in S and for s and t in S, st is also in S.

For a multiplicative subset S of R and an R-module M , we have

MS = {m/t : m ∈M and t ∈ S} .

For m,n in M and t, s in S, we have m/t = n/s if u(sm− tn) = 0 for some
u in S. MS is called the localization of M at the multiplicative set S. The
following are some facts about localization.

Fact 1.1.1 Suppose R is a commutative ring and S is a multiplicative subset
of R. Let M be an R-module. Then the following are easy to see.

(a) RS is a ring and the map R→ RS that sends r to r/1 is a ring homomor-
phism.

(b) MS becomes an RS-module under the natural operations

m/s+ n/t = (tm+ sn)/st and (a/u)(m/t) = am/ut

for m,n in M , a in R and s, t, u in S.

(c) The natural map i :M −→MS that sends m to m/1 is an R-linear map.

(d) The natural map i :M −→MS has the following universal property :
Given an RS-module N and an R-linear map f : M −→ N there is a

3
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unique RS-linear map F :MS −→ N such that the diagram

M
i−→ MS

f ց ↓ F
N

commutes.

(e) For an element f in R, we write Rf for RS and write Mf for MS where
S = {1, f, f2, . . .}. For a prime ideal ℘ of R, R℘ and M℘, respectively,
denote RS and MS where S = R− ℘.

(f) We have MS ≈M ⊗R RS as RS - modules.

(g) Let M,N be two R-modules and let f : M → N be an R-linear map. It
follows from the universal property that there is an RS-linear map
F :MS → NS such that the following diagram

M −→ N
↓ ↓
MS −→ NS

commutes.

Definition 1.1.1 A homomorphism i : R → A of commutative rings is called
flat if for all short exact sequences

0 −→M ′ −→M −→M ′′ −→ 0

of R-modules and R-linear maps, the induced sequence

0 −→M ′ ⊗R A −→M ⊗R A −→M ′′ ⊗R A −→ 0

is exact.

Proposition 1.1.1 For a commutative ring R and a multiplicative subset S of
R, the natural map i : R −→ RS is flat.

Definition 1.1.2 Suppose R is a commutative ring andM is an R-module. We
say that M is finitely presented if there is an exact sequence

0 −→ K −→ Rn −→M −→ 0

of R-modules, for some nonnegative integer n and a finitely generated R-module
K. Equivalently, M is finitely presented if there is an exact sequence

Rm −→ Rn −→M −→ 0

of R-modules, where m and n are nonnegative integers.
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Remark 1.1.1 We leave it as an exercise that for a noetherian commutative
ring R, an R-module M is finitely generated if and only if it is finitely presented.

Notations 1.1.1 Let R be a commutative ring.

1. We denote the set of all prime ideals of R by Spec(R).

2. The set of all maximal ideals of R will be denoted by max(R).

3. For an ideal I of R, V (I) will denote the set of all prime ideals of R that
contain I.

4. For an element f of R, D(f) will denote the set of all the prime ideals of
R that do not contain f .

Exercise 1.1.1 Suppose R is a ring and S ⊆ T be two multiplicative subsets
of R. Then the following diagram

R −→ RS

ց ↓
RT

of the natural maps commutes. Further if T̃ is the image of T in RS then (RS)T̃
is naturally isomorphic to RT . We say that RT is a further localization of RS

to explain this phenomenon.

1.2 The Local-Global Principle

Lemma 1.2.1 Suppose R is a commutative ring and M is an R-module. Then
the following are equivalent :

1. M = 0 ,

2. M℘ = 0 for all ℘ in Spec(R),

3. Mm = 0 for all maximal ideals m of R.

Proof. See the book of Kunz ([K1]), Chapter III.

Proposition 1.2.1 Suppose R is a commutative ring and M is an R-module.
For two submodules M ′ and M ′′ of M , we have M ′ =M ′′ if and only if M ′

m
=

M ′′
m

for all maximal ideals m of R.

Proof. See the book of Kunz ([K1]), Chapter IV.
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Example 1.2.1 Suppose R is a Dedekind domain which is not a Principal ideal
domain (PID). If I is an ideal of R that is not principal, then I is not isomorphic
to R but Im ≈ Rm for all maximal ideals m of R.

Corollary 1.2.1 Suppose I and J are two ideals of R. Then I = J if and only
if Im = Jm for all maximal ideals m of R containing I ∩ J .

Proof. The corollary follows from Proposition 1.2.1 .

Corollary 1.2.2 Suppose that R is a commutative ring andM is an R-module.
Let {mi}i∈I = S be a subset of M . Then the set {mi}i∈I generates M if and
only if the image {mi/1}i∈I of S in Mm generates Mm for all maximal ideals m
of R.

Proof. Let N be the submodule of M generated by S. Now the proof is an
immediate consequence of Proposition 1.2.1.

Lemma 1.2.2 Suppose R is a commutative ring and let f1, f2, . . . , fr be ele-
ments of R. Then D(f1)∪D(f2)∪ . . .∪D(fr) = Spec(R) if and only if the ideal
Rf1 +Rf2 + · · ·+Rfr = R.

We leave the proof of this Lemma as an exercise.

Corollary 1.2.3 Suppose R is a commutative ring and assume that Spec(R) =
D(f) ∪D(g) for some f and g in R. Let M be an R-module.

(a) Suppose that Mf and Mg are finitely generated. Then M is finitely gener-
ated.

(b) Let m1, . . . ,mr be elements inM such that their respective images generate
both Mf and Mg. Then m1, . . . ,mr generate M.

Proof. The corollary follows from Corollary 1.2.2.

Corollary 1.2.4 Suppose R is a commutative ring. Then a sequence

M ′ f−→M
g−→M ′
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of R-modules and R-linear maps is exact if and only if the induced sequence

M ′
m

−→Mm −→M ′
m

is exact for all maximal ideals m of R.

Proof. See the book of Kunz ([K1]), Chapter IV.

Corollary 1.2.5 Let f :M −→ N be an R-linear map.

1. Then f is injective if and only if fm is injective for all m in maxR.

2. Similarly, f is surjective if and only if fm is surjective for all m in maxR.

Proof. It is immediate from Corollary 1.2.4.

Example 1.2.2 Suppose D is a Dedekind domain that is not a PID. Let I be an
ideal that is not principal. Then Im is one generated for all m in maxR. This is
probably the simplest example to illustrate that the local number of generators
and the global number of generators are not always the same. Deriving the
global number of generators from the local number of generators is one of our
main interests in these notes.

Definition 1.2.1 (Zariski Topology) For a noetherian commutative ring R,
the Zariski Topology on Spec(R) is defined by declaring D(f) as the basic open
sets, for f in R. Equivalently, the closed sets in Spec(R) are V (I), where I is
an ideal in R.

Exercise 1.2.1 Let R be a commutative noetherian ring. Then Spec(R) is
connected if and only if R has no idempotent element other than 0 and 1.

1.3 Homomorphisms of Modules and Flatness

The main theorem in this section is about the commutativity of the tensor
product for a flat extension with the module of homomorphisms of modules. Of
particular interest are the cases of polynomial extensions and localizations.

Notations 1.3.1 Suppose R is a commutative ring and M and N are two
R-modules. We shall denote the set of all R-linear maps from M to N by
HomR(M,N) or simply by Hom(M,N). Note that Hom(M,N) is also an R-
module in a natural way.
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Definition 1.3.1 Suppose R,M,N are as in Notations 1.3.1 and let S be a
multiplicative subset of R. We define a natural map

ϕ : S−1HomR(M,N) −→ HomRS
(MS , NS)

by defining ϕ(f/t) :MS −→ NS as

ϕ(f/t)(m/s) = f(m)/st

for f in Hom(M,N), m in M and s, t in S.

Exercise 1.3.1 Let R,M,N, S be as in Definition 1.3.1 and let M be finitely
generated. Prove that the natural map in Definition 1.3.1 is injective. Further,
if M is finitely presented then the natural map is an isomorphism.

In fact, Definition 1.3.1 and Exercise 1.3.1 are, respectively, the particular
cases of Definition 1.3.2 and Theorem 1.3.1 that follow.

Definition 1.3.2 Let i : R −→ A be a flat homomorphism of rings. Let M and
N be two R-modules. Define the natural map

ϕ : HomR(M,N)⊗A −→ HomA(M ⊗A,N ⊗A)

by setting ϕ(f ⊗ t)(m⊗ s) = f(m)⊗ st for f in Hom(M,N), m in M, and s, t
in A.

Theorem 1.3.1 Let i : R −→ A be a flat homomorphism of commutative rings
and letM,N be two R-modules withM being finitely presented. Then the natural
map

ϕ : HomR(M,N)⊗A −→ HomA(M ⊗A,N ⊗A)

is an isomorphism.

Proof. First assume thatM ≈ Rn is free. In that case we have the commutative
diagram :

Hom(M,N)⊗A
ϕ−→ Hom(M ⊗A,N ⊗A)

↓ ≀ ↓ ≀
Nn ⊗A

ϕ′

−→ (N ⊗A)n .

Here Nn denotes the direct sum of n copies of N and ϕ′ is the natural identifi-
cation. Since the vertical maps are isomorphisms, ϕ is also an isomorphism.



1.4. DEFINITION OF PROJECTIVE MODULES 9

In the general case, since M is finitely presented, there is an exact sequence

Rm −→ Rn −→M −→ 0

of R-linear maps. This sequence will induce the following commutative diagram:

0 → Hom(M,N)⊗A→ Hom(Rn, N)⊗A→ Hom(Rm, N)⊗A
↓ ↓ ↓

0 → Hom(M ′, N ′) → Hom(An, N ′) → Hom(Am, N ′)

where M ′ =M ⊗A and N ′ = N ⊗A.
Since the operation of taking Hom( , N) is left exact and R −→ A is flat

the first row of this diagram is exact. For similar reasons, the last row is also
exact. By the case when M is free, the last two vertical maps are isomorphisms.
Hence the first vertical map is also an isomorphism. This completes the proof
of Theorem 1.3.1 .

Remark 1.3.1 All the rings we consider now onwards will be assumed to be
noetherian and commutative. That is why any finitely generated module will
also be a finitely presented module.

Remark 1.3.2 Let A = R[X] be the polynomial ring over a noetherian com-
mutative ring R. Let M and N be two finitely generated R-modules. It follows
that

Hom(M ⊗R[X], N ⊗R[X]) ≈ Hom(M,N)⊗R[X].

Remark 1.3.3 Let R be a noetherian commutative ring and S be a multiplica-
tive subset of R. For finitely generated R-modules M and N , we have

HomRS
(MS , NS) ≈ HomR(M,N)⊗R RS ≈ (HomR(M,N))S .

1.4 Definition of Projective Modules

Before we define projective modules, we want to discuss the splitting properties
of exact sequences.

Definition 1.4.1 Suppose R is a commutative ring and let

0 −→M ′ f−→M
g−→M ′′ −→ 0

be an exact sequence of R-modules and R-linear maps. We say that the sequence
splits if there is an R-linear map ζ :M ′′ −→M such that goζ = IdM ′′ .
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Lemma 1.4.1 Suppose that R is a commutative ring and let

0 −→M ′ f−→M
g−→M ′′ −→ 0

be an exact sequence of R-modules and R-linear maps. Then the following
conditions are equivalent :

1. The sequence splits.

2. M =M ′ ⊕N for some submodule N of M such that the restriction
g|N : N −→M ′′ is an isomorphism.

3. There is a map t :M −→M ′ such that tof = IdM ′ .

4. The natural map

ϕ : Hom(M ′′,M) −→ Hom(M ′′,M ′′) ,

that sends a map h :M ′′ −→M to goh, is surjective.

Proof. It is easy to see that (1) ⇔ (2) ⇔ (3).
To see that (1) implies (4) let ζ :M ′′ −→M be a split i.e. goζ = IdM ′′ . We

have the following

M
g−→ M ′′

ζ ↑ ր Id
M ′′

commutative diagram. Given a map h :M ′′ −→M ′′, we have ϕ(ζoh) = goζoh =
h. Hence ϕ is surjective. This establishes (4).

To see (4) implies (1), let ϕ(ζ) = Id. Then ζ is a split of g. This completes
the proof of the Lemma.

Corollary 1.4.1 Suppose R is a commutative noetherian ring and let

0 −→M ′ −→M −→M ′′ −→ 0

be an exact sequence of finitely generated R-modules and R-linear maps. Then
the sequence splits if and only if the induced exact sequences

0 −→M ′
m

−→Mm −→M ′′
m

−→ 0

split for all m in max(R).

Proof. It is immediate from Lemma 1.4.1 and Corollary 1.2.5.

Now we are ready to define projective modules.
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Definition 1.4.2 Suppose R is a commutative ring and let P be an R-module.
We say that P is a projective R-module if one of the following equivalent condi-
tions hold :

1. Given a surjective R-linear map f :M −→ N and an R-linear map
g : P −→ N there is an R-linear map h : P −→M such that the diagram

P
hւ ↓ g

M
−→

f N −→ 0

commutes.

2. Every exact sequence 0 −→ N −→ M −→ P −→ 0 of R-modules and
R-linear maps splits.

3. There is an R-module Q such that P ⊕Q is free.

4. The functor M −→ HomR(P,M) from the category of R-modules to itself
is exact.

Proof.

(1) ⇒ (2) follows by looking at the diagram

P
hւ ↓ Id

M −→ P −→ 0 .

(2) ⇒ (3) We can find a surjective map f : F −→ P , where F is free. Take Q
= kernel (f). Then P ⊕Q ≈ F is free.

(3) ⇒ (4) Let 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 be an exact sequence of R-

modules and R-linear maps. It is a general fact that

0 −→ Hom(P,M ′) −→ Hom(P,M) −→ Hom(P,M ′′)

is exact. So, we need only to show that the map

Hom(P,M) −→ Hom(P,M ′′)

is surjective. Let F = P ⊕Q be free and let h : P −→M ′′ be any R-linear
map. If h0 : F −→ M ′′ is the map such that h0|P = h and h0|Q = 0
then there is an R-linear map h′0 : F −→ M such that goh′0 = h0. Let
h′ = h0|P , then goh′ = h.

(4) ⇒ (1) is obvious.
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Theorem 1.4.1 Let R be a commutative noetherian ring and let P be a finitely
generated R-module. Then P is projective if and only if P℘ is a free R℘-module
for all ℘ in Spec(R) if and only if Pm is free for all m in max(R).

Proof. Immediate from Corollary 1.4.1 and condition (2) of Definition 1.4.2.



Chapter 2

Patching Modules and

Other Preliminaries

Projective Modules are one of our main interests in these notes. Fiber product is
one of the basic tools that will be used later in these notes to construct Projective
modules. In section 2.1, we shall discuss the techniques of Fiber Product. We
shall use Fiber Product to develop the technique of Patching homomorphisms
of Modules and also to construct Projective modules by patching techniques. In
section 2.5, we discuss the correspondence between vector bundles and Projective
modules. This correspondence is also used to construct a classical example of a
nonfree projective module.

2.1 Fiber Product of Modules

One of the main references for this section is the book ([Mi]) of Milnor.

Definition 2.1.1 Let R be a commutative ring and let f1 : M1 −→ N and
f2 : M2 −→ N be homomorphisms of R-modules. The fiber product of M1 and
M2 over N is a triple (M, g1, g2) where M is an R-module, g1 : M −→ M1

and g2 : M −→ M2 are R-linear maps such that f1og1 = f2og2 and the triple
is universal in the sense that given any other triple (M ′, g′1, g

′
2) of this kind

with f1og
′
1 = f2og

′
2 there is a unique homomorphism h : M ′ −→ M such that

g1oh = g′1 and g2oh = g′2.

Remark 2.1.1 We say that

M
g1−→ M1

↓ g2 ↓ f1
M2

f2−→ N

13
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is a fiber product diagram to mean M is the fiber product of M1 and M2 over N
as defined in Definition 2.1.1. Later in these notes, by a fiber product diagram we
shall mean a combination of more than one such fiber product diagrams connected
by maps between them.

Remark 2.1.2 The definition of fiber product makes sense in any category,
although existence is not guaranteed. We will mainly be interested in

1. the category of commutative rings and ring homomorphisms;

2. the category of R-modules and R-linear maps, where R is a commutative
ring.

Proposition 2.1.1 Let R be a commutative ring and let f1 : M1 −→ N and
f2 : M2 −→ N be two homomorphisms of R-modules. Then the fiber product
of M1 and M2 over N exists and is unique up to an isomorphism.

Proof. Let M = {(m1,m2) ∈M1 ⊕M2 : f1(m1) = f2(m2)} and let

g1 :M →M1 and g2 :M →M2

be the natural projections. It is easy to check that

M
g1−→ M1

↓ g2 ↓ f1
M2

f2−→ N

is a fiber product of M1 and M2 over N . For the uniqueness part one can see
the book of Kunz ([K1]), Chapter III.

Definition 2.1.2 As mentioned in Remark 2.1.2, the fiber product of commu-
tative rings

R −→ R1

↓ ↓
R2 −→ R0

is defined as in Definition 2.1.1. So, in this diagram R is the fiber product of R1

and R2 over R0 in the category of commutative rings.
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Remark 2.1.3 In these notes we shall be concerned with fiber product of mod-
ules, only in the context of a given fiber product of rings as above. We shall
be considering fiber product of an R1-module M1, an R2-module M2 over an
R0-module N . Here follow some examples of fiber products.

Example 2.1.1 Let R be a commutative ring and let I, J be ideals of R. Then

R/I ∩ J −→ R/I
↓ ↓

R/J −→ R/I + J

is a fiber product diagram.
Further, if M is an R-module then

M/(IM ∩ JM) −→ M/IM
↓ ↓

M/JM −→ M/(I + J)M

is a fiber product diagram of R-modules.

Example 2.1.2 Let R be a commutative ring and s, t be elements in R such
that Rs+Rt = R. Then

R −→ Rs

↓ ↓
Rt −→ Rst

is a fiber product diagram of commutative rings.
Further, if M is an R-module, then

M −→ Ms

↓ ↓
Mt −→ Mst

is a fiber product diagram of R-modules.

It is important to understand the proofs of Examples (2.1.1) and (2.1.2),
which we leave as exercise.

Proposition 2.1.2 Let R be a commutative ring and

M
g1−→ M1

↓ g2 ↓ f1
M2

f2−→ N

be a commutative diagram of R-modules. This diagram is a fiber product di-
agram if and only if for each pair of elements m1 in M1 and m2 in M2 with
f1(m1) = f2(m2) there is a unique element m in M with g1(m) = m1 and
g2(m) = m2.
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The proof of this Proposition 2.1.2 is obvious from the construction in Propo-
sition 2.1.1.

Exercise 2.1.1 Suppose R is a commutative ring and

M −→ M1

↓ ↓
M2 −→ M0

is a fiber product diagram of R-modules. Let t be a nonzero element in R. Then

Mt −→ M1t

↓ ↓
M2t −→ M0t

is also a fiber product diagram of Rt-modules.

2.2 Patching Homorphisms of Modules

In this section, we shall be patching homomorphisms of modules in the context
of fiber product diagrams of rings as follows.

Proposition 2.2.1 Let R be a commutative ring and let s and t be elements
in R such that Rs+Rt = R. Suppose M and M ′ are two R-modules. Let
f1 :Ms −→M ′

s be a Rs-linear map and f2 :Mt −→M ′
t be a Rt-linear map such

that (f1)t = (f2)s.

1. Then there is an R-linear map f : M −→ M ′ such that (f)s = f1 and
(f)t = f2.

2. Further, if f1 and f2 are injective (respectively, surjective, isomorphism)
then so is f .

Proof. The proof follows from the following fiber product diagram :

M //

f

!!B
B

B

B

B

B

B

B

��

Ms

��

f1

##G

G

G

G

G

G

G

G

G

M ′ //

��

M ′
s

��

Mt
//

f2

!!B
B

B

B

B

B

B

B

Mst

f0

##G

G

G

G

G

G

G

G

M ′
t

// M ′
st .
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Here f0 = (f1)t = (f2)s and f :M −→M ′ is obtained by the properties of fiber
product diagrams. Now the theorem follows from the properties of fiber product
diagrams.

Remark 2.2.1 The Proposition 2.2.1 could as well be proved directly. We gave
this proof because we shall be using such fiber product diagrams in our later
discussions.

Further, the Proposition 2.2.1 also holds in the following situation: whenever
we are given two fiber product diagrams of R-modules

M −→ M1 and M ′ −→ M ′
1

↓ ↓ ↓ ↓
M2 −→ M0 M ′

2 −→ M ′
0

and R-linear maps maps fi :Mi −→M ′
i for i = 0, 1, 2 so that the diagrams

Mi
fi→ M ′

i

↓ ↓
M0

f0→ M ′
0

commute for i = 1, 2 then there is an R-linear map f :M −→M ′ with respective
properties as in Proposition 2.2.1.

We conclude this Chapter with the following exercise.

Exercise 2.2.1 Let R be a commutative ring and let S be a multiplicative
subset of R. Let M and N be finitely generated R-modules and f :MS −→ NS

be an RS-linear map. Then there is an element t in S and an Rt-linear map
g :Mt −→ Nt such that (g)S = f .

Further, if f is injective (respectively, surjective, isomorphism) then we can
pick t in S, so that g is also injective (respectively, surjective, isomorphism).

2.3 Elementary facts about Projective Modules

We start with some easy remarks.

Remark 2.3.1 If P is a finitely generated projective R-module, then P ⊕Q is
a free R-module of finite rank for some R-module Q.
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Proposition 2.3.1 Let R be a commutative ring.

1. If P is a projective R-module and S is a multiplicative subset of R then
PS is a projective RS-module.

2. If P is a projective R-module and I is an ideal of R then P/IP is a
projective R/I-module.

3. More generally, if R −→ A is a ring homomorphism and if P is a projective
R-module then P ⊗R A is a projective A-module.

4. Direct summand of a projective module is projective.

Proposition 2.3.2 Let R be a noetherian commutative local ring and let P be
a finitely generated R-module. Then P is projective if and only if P is free.

Proof of Proposition 2.3.2 follows form Nakayama’s Lemma, which we state
here for the sake of completeness.

Lemma 2.3.1 (Nakayama) Let R-be a commutative ring and M be a finitely
generated R-module. Suppose I is an ideal and IM = M . Then there is an x
in I such that (1 + x)M = 0. In particular, if R is a local ring and I is a proper
ideal then M = 0.

Proof. See the book of Matsumura ([Mt]), Chapter 1.

Proof of Proposition 2.3.2. The proof follows from Lemma 2.3.1. One can
see the book of Kunz ([K1]), Chapter IV.

Proposition 2.3.3 Let R be a commutative noetherian ring and let P be a
finitely generated R-module. Then P is projective if and only if Pm is free for
all maximal ideals m of R.

Proof. Suppose P is projective. Then Pm is projective and hence free by
Proposition 2.3.2. The converse follows from Corollary 1.4.1. One can see the
book of Kunz ([K1]), Chapter IV.

Before we conclude this section we define the rank of a projective module.
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Definition 2.3.1 Let R be a commutative noetherian ring and let P be a
finitely generated projective R-module. We define the rank function as

rank(P, ℘) = rank(P℘)

for prime ideals ℘ in Spec(R). If rank(P, ℘) = r is constant for all ℘ in Spec(R),
then we say that P has rank r.

Exercise 2.3.1 For a finitely generated projective R-module P , rank(P, ℘) is
a continuous function from Spec(R) to {0, 1, 2, . . .} = N . Hence if R has no
nontrivial idempotent, then rank(P, ℘) = r is constant (see Exercise 1.2.1).

2.4 Modules over Principal Ideal Domains

Before we state our main theorem in this section, we define torsion free modules.

Definition 2.4.1 Let R be a commutative ring and letM be an R-module. We
say that M is torsion free if rm 6= 0 for all nonzero divisors r in R and m 6= 0
in M .

The following is the main theorem in this section.

Theorem 2.4.1 Let R be a principal ideal domain (PID) and M be a finitely
generated torsion free R-module. Then M is free. In particular, finitely gener-
ated projective modules over R are free.

Proof. Let S be the set of all nonzero elements in R. Then S−1M is a finite
dimensional vector space over RS . Therefore, there is an isomorphism,
f : S−1M −→ S−1Rn for some n. Let m1, . . . ,mk be generators of M and let
f(mi/1) = xi/s for some xi in Rn and some s in S. Define an R-linear map
g : M −→ Rn by g(m) = x if f(m) = x/s. This map is well defined and since
M is torsion free the map is also injective. So, we can assume that M is a
submodule of Rn.

Now we shall prove that any submodule M of Rn is free, by induction on n.
If n = 1, then M is an ideal of R and hence free of rank one.
Assume n > 1 and let pn : Rn −→ R be the projection to the last coordinate.

Let I = pn(M). If I = 0, then M is a submodule of Rn−1 and M is free by
induction. If I 6= 0, then I is free of rank one and

0 −→M ′ −→M −→ I −→ 0
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is exact where M ′ = kernel pn ∩M . Again by induction M ′ is free. Since this
sequence is split exact, M ≈M ′ ⊕ I is free.

The following is a more explicit version of Theorem 2.4.1 that we need for
our future use.

Proposition 2.4.1 Let R be a principal ideal domain andM 6= 0 be a submod-
ule of a free module Rn and e1, . . . , en be a basis of Rn. Then, after relabeling the
basis, there are nonzero elements f1, f2, . . . , fr in R such that M = ⊕r

i=1Rfiei,
where r = rank M .

Proof. We use induction on n. If n = 1 then M is an ideal of R = Re1. So,
M = Rf1e1 for some nonzero f1 in R.

Now assume that n > 1 and let pn : Rn −→ R be the projection to R ≈ Ren.
Let I = pn(M). If I = 0 then M is a submodule of ⊕n−1

i=1 Rei and hence by
induction M = ⊕r

i=1Rfiei. If I 6= 0 then I = Rfr for some nonzero fr in R. If
M ′ = kernel pn ∩M , then

0 −→M ′ −→M −→ I = Rfr −→ 0

is a split exact sequence. Since M ′ is a submodule of ⊕n−1
i=1 Rei, the proposition

follows by induction.

2.5 Vector Bundles and Projective Modules

The purpose of this section is to give some of the obvious and the classical
examples of projective modules that are not free. This is also an opportunity to
talk about the correspondence between the topological vector bundles and the
projective modules over the ring of continuous functions.

Example 2.5.1 Let A be a commutative ring and let R = A × A. Then P =
0×A is a projective R-module that is not free.

The following is the classical example of a nonfree projective module that is
not so obvious.

Example 2.5.2 (Sw4) Let

R = R[X,Y, Z]/(X2 + Y 2 + Z2 − 1) = R[x, y, z]
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be the algebraic coordinate ring of the sphere S2. Define a map f : R3 −→ R
by sending e1 = (1, 0, 0) to x, e2 = (0, 1, 0) to y and e3 = (0, 0, 1) to z. Since
x2+ y2+ z2 = 1, we have f is surjective. Let P = kernel (f). Then P ⊕R ≈ R3

and hence P is a projective R-module. It is well known that P is not free. This
follows from the fact that the Tangent Bundle of the sphere S2 is not trivial.

The rest of this section is devoted to justify the validity of Example 2.5.2.
This will also be an opportunity to mention the correspondence between vector
bundles and projective modules. We shall only be able to sketch this theory.
One can see the papers of Swan ([Sw1], [Sw4]) for more details on this theory.

Definition 2.5.1 Suppose S is a connected compact real manifold. A (real)
vector bundle V over S of rank n is a topological space V with a continuous map
π : V −→ S such that

1. For x in S, the fiber π−1x is a vector space over R of dimension n;

2. For x in S, there is an open neighborhood U of x and a homeomorphism
ϕ : U ×Rn −→ π−1U such that πoϕ = p, where p : U ×Rn −→ U is the
projection map. Also, for all y in U , the restriction of ϕ to y×Rn −→ π−1y
is an R-linear homomorphism.

The maps between vector bundles over S are defined in the obvious way. A
vector bundle V over S is said to be trivial if it is isomorphic to the vector bundle
S ×Rn for some nonnegative integer n, in the category of vector bundles over
S.

Definition 2.5.2 Let S be as above and let π : V → S be a vector bundle over
S. A section of V is a continuous map s : S → V such that πos = id.

Given a connected compact manifold S, the ring of all continuous functions
from S to R will be denoted by C(S).

Definition 2.5.3 Let S be as above and let V be a vector bundle over S. Let
P (V ) be the set of all sections of V . Then P (V ) has a C(S)-module structure
under the operations :

1. for s and t in P (V ) define (s+ t)(x) = s(x) + t(x),

2. for s in P (V ) and f in C(S) define (fs)(x) = f(x)s(x).
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Proposition 2.5.1 (Sw4) Let S be as above and V be a vector bundle of rank
n over S. Then P (V ) is a projective C(S)-module of rank n.

Proof. See the paper of Swan ([Sw4]).

Theorem 2.5.1 (Swan) Let S be a connected compact Hausdorff space. Then
V → P (V ) gives an equivalence of categories between the category of vector
bundles on S and the category of projective C(S)-modules of finite rank. In
particular, V is trivial if and only if P (V ) is free.

Proof. See the paper of Swan ([Sw4]).

Example 2.5.3 Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the sphere.
Then T = {(x, y, z, u, v, w) ∈ S2 ×R3 : xu+ yv+ zw = 0} is the tangent bundle
on S2. It is also known that T is not trivial. Then P (T ) = set of all continuous
functions s = (u, v, w) : S2 → R3 such that xu(x) + yv(y) + zw(z) = 0 for all x
in S2. So, it follows from Theorem 2.5.1 that P (T ) is not a free C(S2)-module.

Now we are ready to give a proof of Example 2.5.2.

Proof of Example 2.5.2. Our notations here are as in Example 2.5.2 and
Example 2.5.3. Clearly, P=kernel f = {(u, v, w) in R3 : ux + vy + wz = 0}.
Note that R is a subring of C(S2) and P (T ) ≈ P ⊗R C(S

2). Since P (T ) is not
free, P cannot be free.

2.6 Some Constructions of Projective Modules

In this section we shall give some of the standard constructions of projective
modules. We start with some definitions.

Definition 2.6.1 Let R be a commutative ring and let (x1, x2, . . . , xn) be in
Rn. We say that (x1, x2, . . . , xn) is a unimodular row if

x1y1 + x2y2 + · · ·+ xnyn = 1

for some y1, y2, . . . , yn in R. The set of all unimodular rows in Rn will be denoted
by Un(R).
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Definition 2.6.2 Let R be a commutative ring and letM be a finitely generated
R-module. We say thatM is stably free ifM⊕Rk ≈ Rn+k for some nonnegative
integers n and k. Obviously, a stably free module is projective. Therefore,
Example 2.5.2 is also stably free.

Construction 2.6.1 Let R be a commutative ring and let (x1, x2, . . . , xn) be
a unimodular row in Rn. Define a map f : Rn → R by sending the standard
basis e1, e2, . . . , en to x1, x2, . . . , xn, respectively. Let P = kernel of f . Then
P ⊕R ≈ Rn. So, P is stably free.

Exercise 2.6.1 Let R be a commutative ring.

1) Let P be as in Construction 2.6.1. Then P is free if and only if the unimodular
row (x1, . . . , xn) is the first row of an invertible n× n - matrix.

2) More generally, let F and F ′ be two finitely generated free modules over a
commutative ring A. Let

α : F −→ F ′

be a surjective A-linear map and P be the kernel of α . Then P is free if
and only if the matrix of α can be completed into an invertible matrix.

The following is the construction of projective modules by the method of
patching that will be of great use for us in the later sections.

Construction 2.6.2 Let R be a commutative ring and let s1, s2 be in R be
such that Rs1+Rs2 = R. Let Pi be a finitely generated projective Rsi - module
for i = 1, 2. Let f : (P1)s2 −→ (P2)s1 be an isomorphism and let

P −→ P2

↓ ↓

P1 → (P1)s2
f→ (P2)s1

be a fiber product diagram. Then since Ps1 ≈ P1 and Ps2 ≈ P2 are projective,
P is also projective by Proposition 2.3.3.

For similar constructions of projective modules see the book of Milnor ([Mi]).
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Chapter 3

Extended Modules over

Polynomial Rings

In this chapter we prove various theorems of Quillen and Suslin that lead to
the proof of Serre’s Conjecture that finitely generated projective modules over
polynomial rings over fields are free. Serre’s conjecture was proved, indepen-
dently, by Quillen and Suslin using two different methods. We will, essentially,
be following Quillen’s methods.

3.1 Quillens Theorem

In this section we shall prove Theorem 3.1.1 of Quillen that a module over a
polynomial ring is extended if it is locally extended. We start with the definition
of extended modules.

Definition 3.1.1 Let A→ B be an extension of commutative noetherian rings.
A B-module M is said to be extended from A (or simply an extended module)
if M ≈ N ⊗A B for some A-module N . We will mainly be concerned with the
situations where B will be a polynomial ring over A.

Proposition 3.1.1 Let R = A[X] be a polynomial ring over a commutative
noetherian ring A and let M be a finitely generated R-module that is extended
from A. Then M ≈ M̄ ⊗A R[X] where M̄ =M/XM .

Proof. Since M is extended, M ≈ N ⊗A A[X] for some A-module N . Then
M̄ =

M/XM ≈ (N ⊗A A[X])⊗R R/XR ≈ N ⊗A (A[X]⊗R R/XR) ≈ N ⊗A A ≈ N.

25
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So, M ≈ M̄ ⊗A R.

The main theorem in this section is the theorem of Quillen ([Q]) as follows.

Theorem 3.1.1 (Quillen) Let R = A[X] be a polynomial ring over a noethe-
rian commutative ring A and let M be a finitely generated R-module. If Mm =
(A\m)−1M is extended from Am , for all m in max(A), then M is extended from
A.

We shall use the following two lemmas to prove Theorem 3.1.1.

Lemma 3.1.1 (Quillen) Let A be a commutative ring and R be an A-algebra
(that is not necessarily commutative). Let f be in A and X be a variable. Let
θ be a unit in 1 + XRf [X]. Then there is an integer k ≥ 0 such that for any
g1, g2 in A with g1 − g2 in fkA, there exists a unit ψ in 1 + XR[X] such that
ψf (X) = θ(g1X)θ(g2X)−1.

Proof. Let θ(X) =
∑p

i=0 aiX
i and θ(X)−1 =

∑p
i=0 biX

i with ai, bi in Rf and
a0 = b0 = 1. Let r be a nonnegative integer and let Y,Z be indeterminates.
Then

θ((Y + frZ)X)θ(Y X)−1 = 1 + [θ((Y + frZ)X)− θ(Y X)]θ(Y X)−1

= 1 + ZX

p
∑

i=1

p
∑

j=0

i−1
∑

n=0

fraibj(Y + frZ)i−1−nY n+jXi−1+j .

If r is large enough then there are Cij in R such that (Cij)f = fraibj . So,
there is φ in 1+ZXR[Y,Z,X] such that φf (Y,Z,X) = θ((Y +frZ)X)θ(Y X)−1.
Replacing Y,Z by Y +frZ,−Z we see that there is φ′ in 1+ZXR[Y,Z,X] such
that φ′f (Y,Z,X) = θ(Y X)θ((Y +frZ)X)−1. Then we have (φφ′)f = (φ′φ)f = 1.
So, if we write φφ′ = 1+ZXh1 and φ′φ = 1+ZXh2, then there is a nonnegative
integer s such that fsh1 = fsh2 = 0. It follows that φ(Y, fsZ, T ) is a unit. The
lemma now follows with k = r+s and ψ(X) = φ(g2, f

sz,X) where g1 = g2+f
kz.

Lemma 3.1.2 (Quillen) Let R = A[X] be a polynomial ring over a commu-
tative noetherian ring A and let s, t in A be such that As+At = A. Let M0 be
an A-module and M =M0 ⊗A A[X] =M0[X] and N be an R-module. Suppose
f1 : Ms → Ns and f2 : Mt → Nt are two isomorphisms such that (f1)t ≡ (f2)s
(modulo X). Then there is an isomorphism f : M → N such that (f)s ≡ f1
(modulo X) and (f)t ≡ f2 (modulo X).
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Proof. Let θ = (f1)
−1
t o(f2)s : Mst → Mst. It follows that θ ≡ Id (modulo X).

We look at θ as an element in End(Mst) = End(M0st)[X] and apply Quillen’s
Lemma 3.1.1. So,

θ = ϕ0 + ϕ1X + ϕ2X
2 + · · ·+ ϕrX

r

for some ϕi in End(M0st) and ϕ0 = IdM0st
. Apply Lemma 3.1.1 for the extension

As → End(M0s). We see that there is an integer k1 ≥ 0 such that whenever
g1 − g2 is in tk1As for some g1, g2 in As, there is a unit ψ1 in 1+X End(M0s)[X]
such that (ψ1)t = θ(g1X)θ(g2X)−1. Similarly, there is an integer k2 ≥ 0, such
that whenever g1 − g2 is in sk2At, there is a unit ψ2 in 1+X End(M0t)[X] such
that ψ2s = θ(g1X)θ(g2X)−1. Fix k ≥ max{k1, k2}. Since atk+bsk = 1 for some
a, b in A, we have

θ(X)θ(bskX)−1 = (ψ1)t

for some unit ψ1 in 1 +X End(M0s)[X] and

θ(bskX) = θ(bskX)θ(0)−1 = (ψ2)s

for some unit ψ2 in 1 +X End (M0t)[X].
So,

(f1)
−1
t o(f2)s = θ(X) = [θ(X)θ(bskX)−1][θ(bskX)θ(0)−1] = (ψ1)t(ψ2)s.

Hence (f1ψ1)t = (f2ψ
−1
2 )s.

So, there is an isomorphism f :M → N such that fs = f1ψ1 and ft = f2ψ
−1
2 .

Since ψ1 ≡ Id (modulo X), we have (f)s ≡ f1 (modulo X). Similarly, (f)t ≡ f2
(modulo X). This completes the proof of Lemma 3.1.2.

Now we are ready to give a proof of Theorem 3.1.1 of Quillen.

Proof of Theorem 3.1.1 of Quillen. Let N =M/XM . Because of Proposi-
tion 3.1.1, we need to prove that M ≈ N ⊗A[X]. Let

J = {t in A :Mt ≈ Nt ⊗A[X]} = {t in A :Mt is extended from At} .

We shall first prove that J is an ideal of A. Clearly, 0 is in J and also for a
in A and t in J we have at is in J .

Now let s and t be in J . We want to show that s+ t is in J . By replacing A
by As+t, we can assume that As+At = A. We have two isomorphisms

f1 : (N ⊗A[X])s −→Ms and f2 : (N ⊗A[X])t −→Mt .

We can assume that f1 ≡ Id (modulo X) and f2 ≡ Id (modulo X). Hence
by Lemma 3.1.2 N ⊗A[X] ≈M .

So, we have proved that the set J defined above is an ideal of A.
Now we prove that J = A. Otherwise, J is contained in a maximal ideal m

of A. Since Mm ≈ Nm ⊗ A[X], it follows that Mt ≈ Nt ⊗ A[X] for some t in
A\m. This means t is in J . This contradicts that J is contained in m.
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So, J = A. Hence 1 is in J and M ≈ N ⊗ A[X]. Therefore the proof is
complete.

Remark 3.1.1 It follows from the proof of Theorem 3.1.1 that for a finitely
generated A[X]-module M , we have J = {t in A : Mt is extended from At} is
an ideal. It is also clear that

√
J = J .

3.2 Projective Modules over Polynomial Rings

In this section we prove various important theorems of Quillen and Suslin, in-
cluding the Conjecture of Serre. Recall that a polynomial f in a polynomial ring
R = A[X] is called a monic polynomial if the coefficient of the leading term of
f is a unit in A. The following theorem of Horrocks plays an important role in
this theory.

Theorem 3.2.1 (Horrocks) Let (A,m) be a commutative noetherian local ring
and let R = A[X] be the polynomial ring. Suppose P is a finitely generated pro-
jective R-module such that Pf is free for some monic polynomial f in R. Then
P is free.

Before we prove Theorem 3.2.1 of Horrocks, we derive the following Theorems
3.2.2 and 3.2.3, both proved, independently, by Quillen and Suslin from Theorem
3.2.1.

Theorem 3.2.2 (Quillen, Suslin) Let A be a noetherian commutative ring
and let R = A[X] be the polynomial ring. Suppose that P is a finitely generated
projective R-module such that Pf is free for some monic polynomial f in R.
Then P is free.

Proof. Here we give the proof of Quillen. For any maximal ideal m of A, Pm =
(A − m)−1P is free by Horrocks’ Theorem 3.2.1. So, Pm is extended for all
maximal ideals m of A. By Theorem 3.1.1 of Quillen, we have P is extended
from A. So, P ≈ N ⊗ A[X] for some A-module N . It remains to show that N
is free.

Now look at RX = A[X,X−1] and let Y = X−1 and g(Y ) = X−df(X)
where d = degree of f . Since f is monic, the constant term of g is a unit. Hence
g(Y )A(Y ) + Y A[Y ] = A[Y ].
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The diagram

A[Y ] −→ A[Y, Y −1] = A[X,X−1]

↓ ↓

A[Y ]g −→ A[Y ]Y g = A[X,X−1]f

is a fiber product diagram.
Let r = rank Pf and let F be a free A[Y ]g - module of rank r. Since PXf

is free there is an A[Y ]g -linear map ϕ : F → PXf so that the induced map
Fg → PXf is an isomorphism. Let P ′ be the projective A[Y ] -module given by
the fiber product diagram

P ′ −→ PX

↓ ↓

F
ϕ−→ PXg .

Since P ′
Y ≈ PX is extended from A, by the argument of the first paragraph,

P ′ is also extended from A. Therefore P ′ ≈ N ′⊗A[Y ] for some finitely generated
A-module N ′.

The natural map P ′ → P ′
g ≈ F will induce an isomorphism

P ′/Y P ′ ≈ P ′
g/Y P

′
g ≈ F/Y F

(this is possible because g(0) = 1). Since F is free, P ′/Y P ′ is also free. Hence
N ′ ≈ P ′/Y P ′ is free.

Now it follows that

N ≈ P/(X − 1)P ≈ PX/(X − 1)PX ≈ P ′
Y /(Y − 1)P ′

Y ≈ P ′/(Y − 1)P ′ ≈ N ′

is free. So, P ≈ N ⊗A[X] is free. So, the proof of Theorem 3.2.2 is complete.

Exercise 3.2.1 Let P be a finitely generated R = A[X]-module and let N be
a finitely generated projective A-module. Suppose that Pf ≈ N [X]f for some
monic polynomial f . Then P ≈ N [X].

The following theorem, proved independently by Quillen and Suslin, settles
the conjecture of Serre about projective modules over polynomial rings over
fields.

Theorem 3.2.3 (Quliien,Suslin) Let R = A[X1, . . . , Xn] be a polynomial ring
over a principal ideal domain A. Then any finitely generated projective R-module
is free.
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Proof. We prove this theorem by induction on n. If n = 0, then any finitely
generated projective R-module is free by Theorem 2.4.1.

Now assume that n > 0. Let S be the set of all monic polynomials in A[X1]
and let A′ = S−1A[X1]. Since dim(A′) = 1 and A′ is a unique factorization
domain, A′ is a principal ideal domain. By induction it follows that S−1P is
a free S−1R = A′[X2, . . . , Xn]-module. So, there is a monic polynomial f in
A[X1], such that Pf is free. Hence P is free by Theorem 3.2.2 and the proof is
complete.

The rest of this section is devoted to proving Theorem 3.2.1 of Horrocks.

3.2.1 The Proof of the Theorem of Horrocks

The proof of Theorem 3.2.1 that we give here evolves out of some techniques
that was developed by Amit Roy ([R]) and is due to Budh Nashier and Warren
Nichols([NN]). We follow the notations as in Theorem 3.2.1.

First note that since A is local, R = A[X] has no idempotent element other
than 0 and 1. So, P has a constant rank. First we shall establish Theorem 3.2.1
for the rank one case. We shall split the proof of this part into several lemmas.

Lemma 3.2.1 Let R be any noetherian commutative ring and let P be a pro-
jective R-module of rank one. Then P is isomorphic to a projective ideal (also
called an invertible ideal) of R.

Proof. Let S be the set of all nonzero divisors of R. Then since S−1R is a
semilocal ring and since P has constant rank one, S−1P is isomorphic to S−1R.
Hence Ps ≈ Rs for some s in S. By removing the denominators (as in Theorem
2.4.1) we can assume that there is an injective map f : P → R. So P ≈ f(P ),
which is an ideal.

Lemma 3.2.2 Let R = A[X] be as in Theorem 3.2.1 and I be an ideal of R.
Assume that I contains a monic polynomial. Then each nonzero element f in
I +mR/mR is the image of a monic polynomial in I.

Proof. The proof is done by careful use of the division algorithm. Let k = A/m
and let f be a nonzero element in I +mR/mR. Then there is an element g1 in
I such that ḡ1 = f . (“ – ” bar denotes the image in R/mR ≈ k[X]). Let
degree(f) = r and hence degree (g1) = n ≥ r. Let g1(X) = anX

n+an−1X
n−1+

· · ·+ a0 with ai in A. Now, if n = r, then g1 is monic and the proof is complete
in this case. Now assume that n > r. So, an is in m.
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We claim that I contains a monic polynomial of degree r + 1. To see this,
let F1(X) be a monic polynomial in I of degree d > r + 1. We can assume that
the leading coefficient of F1 is one. Now degree(Xd−1−rf(X)) = d− 1. We also

have Xd−1−rg1(X) = Xd−1−rf(X).
Write k = d + n − r − 1 and let g2(X) = Xd−1−rg1(X) − anX

k−dF1(X).
Then degree(g2) ≤ k − 1 and ḡ2 = Xd−1−rf(X) has degree d − 1. Repeating
this process, we can find a polynomial g′(X) in I of degree d − 1, so that ḡ′ =
Xd−1−rf(X). Since Xd−1−rf(X) also has degree d− 1, we have g′ is monic.

So, we found a monic polynomial g′ in I of degree d − 1. Again repeating
this process, we see that there is a monic F (X) in I of degree r+1. We can also
assume that the leading coefficient of F is one.

Now G(X) = g1(X)−anXn−r−1F (X) has degree n− 1 and Ḡ = ḡ1 = f(X).
Repeating this process we get a polynomial G1 in I of degree r so that Ḡ1 = f .
Hence G1 is also monic. This completes the proof of Lemma 3.2.2.

Lemma 3.2.3 Suppose R is a noetherian commutative ring . Let I be an
invertible ideal of R and let J be an ideal of R contained in I. Then there is an
ideal L of R such that LI = J .

Proof. Let L = {f(X) in R : f(X)I ⊆ J}. We check that for every maximal
ideal m of R, we have (LI)m = Jm. Note that LI is contained in J . If LI is not
contained in m then (LI)m = Rm = Jm .

Assume that LI is contained in m. So, either L or I is contained in m. Since
J is contained in L, it follows that J is also contained in m.

Now Lm = {f in Rm : fIm ⊆ Jm}.
If I is not contained in m, then (LI)m = Lm = Jm . If I is contained in m,

then Im = gRm for some nonzero divisor g and Lm = {f in Rm : fg is in Jm}.
Hence (LI)m = Lm(gRm) = Jm . So, the proof of Lemma 3.2.3 is complete.

Lemma 3.2.4 Let R = A[X] be a polynomial ring over a noetherian commu-
tative ring A and let I be an invertible ideal that contains a monic polynomial.
Then I is a principal ideal.

Proof. Let J = I+mR and let J/mR = fk[X] for some f(X) in k[X] = R/mR.
By Lemma 3.2.2, there is a monic polynomial F (X) in I, so that F̄ = f (here
“ – ” bar means the images in k[X]). So, it follows that J = RF + mR. By
Lemma 3.2.3, let I ∩ mR = IL for some ideal L of R. Now mI ⊂ I ∩ mR.
Since IL ⊆ mR and since I is not contained in mR, we have L ⊆ mR. Hence
I ∩mR = IL ⊆ mI. So, it follows that I ∩mR = mI.

We have I+mR = J = RF +mR. So, I = RF + I ∩mR = RF +mI, where
F is a monic polynomial. Now I/FR =M is a finitely generated
R/FR -module and M = mM . Since m is contained in the radical of R/FR, it
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follows from Nakayama’s Lemma that M = 0. Hence I = RF . So, the proof of
Lemma 3.2.4 is complete.

As Lemma 3.2.1 and Lemma 3.2.4 settle the proof of the rank one case of
Theorem 3.2.1 of Horrocks, we proceed to prove the higher rank case of the
theorem. We need the following lemma.

Lemma 3.2.5 Let R be a principal ideal domain and let M be a finitely gen-
erated free R-module. Let p be a nonzero element of M . Then M has a basis
p1, p2, . . . , pr such that p = ap1 for some a in R.

Proof. Let q1, . . . , qr be a basis of M and p = a1q1 + · · · + arqr for a1, . . . ar
in R. We can assume that a1 6= 0. Let aR = a1R + · · · + arR. Then ai = abi
for b1, . . . , br in R. So, if a = c1a1 + · · · + crar then c1b1 + · · · + crbr = 1. Let
p1 = b1q1 + b2q2 + · · ·+ brqr. Define an R-linear map ϕ :M −→ Rp1 by sending
qi to cip1 for i = 1 to r. Then ϕ(p1) = p1. So ϕ splits and M = kerϕ⊕Rp1.

Now let p2, . . . , pr be a basis of ker ϕ. Hence p1, p2, . . . , pr is a basis of M
and ap1 = p. So the proof of Lemma 3.2.5 is done.

Now we are ready to prove Theorem 3.2.1 of Horrocks.

Proof of Theorem 3.2.1. Let n = rankP . We give a proof by induction on n.

If n = 1, then by Lemma 3.2.1 P is isomorphic to an ideal I of R. Since Pf ≈
Rf , we can also assume that If = Rf . Hence I contains a monic polynomial.
Hence I is a principal ideal by Lemma 3.2.4. Therefore P is free.

Now assume that n ≥ 2. Let p1, . . . , pn be a basis of Pf . Let “ – ” bar denote
“(modulo mR)” and let k = A/m. Since p1 is not in mP , we have p̄1 is nonzero.
By Lemma 3.2.5, we can find q1, q2, . . . , qn in P , so that q̄1, . . . , q̄n is a basis of
P̄ and p̄1 = aq̄2 for some a in k[X].

Now fkq1 = a1p1 + · · · + anpn for some k ≥ 1 and a1, . . . , an in R. Let
p = q1 + Xtp1 for some t ≥ 0, so that a1 + fkXt = f1 is a monic polynomial.
Hence fkp = fkq1 + fkXtp1 = (a1 + fkXt)p1 + a2p2 + · · ·+ anpn.

Let T = 1+mR. Since p̄ = q̄1+X
tp̄1 = q̄1+X

taq̄2, we see that p̄, q̄2, . . . , q̄n
generates P̄ . Hence by Nakayama’s Lemma we have p, q2, . . . , qn generate PT .
Since PT is a projective RT -module of rank n, it follows that p, q2, . . . , qn is a
basis of PT .

Let P ′ = P/Rp. Then P ′
T is free of rank n − 1, with basis q2, . . . , qn. Also

Pff1 has a basis p, p2, . . . , pn. Hence P
′
ff1

is also free of rank n− 1.

Since ff1 is monic, for any given maximal idealM , eitherM does not contain
ff1 or it does not intersect with T . Hence P ′ is a projective R-module. Since
P ′
ff1

is free, by induction P ′ is also free. Hence P is free. This completes the
proof of Theorem 3.2.1 of Horrocks.
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The following exercise is the Laurent polynomial version of Theorem 3.2.2 of
Quillen and Suslin.

Exercise 3.2.2 Let R = A[X,X−1] be the Laurent polynomial ring over a
noetherian commutative ring A and let P be a finitely generated projective R-
module. If Pf is free for some Laurent polynomial f so that the coefficients
of the highest and the lowest degree terms of f are units (we say f is doubly
monic), then P is free. (see [Ma5]).
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Chapter 4

Modules over Commutative

Rings

In this Chapter we shall talk about the theory of basic elements over noetherian
commutative rings. Unless otherwise specified all our rings are commutative
noetherian and modules are finitely generated.

4.1 The Basic Element Theory

In some sense, the concept of basic element is the best possible generalization
of the concept of basis of vector spaces. This concept was thoroughly studied
by Eisenbud and Evans ([EE1]). This theory was also successful in giving an
unified treatment to prove almost all the important results in this area at that
time.

Before we give the definitions, we introduce the following notations.

Notations 4.1.1 For a finitely generated A-module M , the minimal number
of generators of M will be denoted by µ(M). For a prime ideal ℘, µ(M℘) will
denote the minimal number of generators of M℘ as an A℘-module.

Definition 4.1.1 Let A be a noetherian commutative ring and let M be a
finitely generated A-module.

1. An element m of M is said to be a basic element of M at a prime ideal ℘
if m is not in ℘M℘.

2. An element m of M is said to be a basic element of M if m is basic in
M at all the prime ideals ℘ of A. We also say that m is basic in M on a
subset X of Spec(A) if m is basic in M at all prime ideals in X.

35
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3. For a nonnegative integer w, a submodule M ′ of M is said to be w −
fold basic in M at a prime ideal ℘, if µ((M/M ′)℘) ≤ µ(M℘)− w.

4. For a set of elements {m1, . . . ,mt} of M , we say that {m1, . . . ,mt} is
w − fold basic in M at ℘ if M ′ =

∑t
i=1Ami is w-fold basic in M at ℘.

We also say that m1, . . . ,mt are w − fold basic in M at ℘ to mean that
the set {m1, . . . ,mt} is w − fold basic in M at ℘.

Remark 4.1.1 Suppose A is a commutative noetherian ring andM is a finitely
generated A-module.

1. Clearly, an element m of M is basic in M at a prime ideal ℘ if and only if
m is 1-fold basic in M at ℘. It also follows from Nakayama’s Lemma that
m is a basic element of M at a prime ideal ℘ if and only if m extends to
a minimal set of generators of M℘.

2. Suppose that a subset {m1, . . . ,mt} of M is w-fold basic in M at a prime
ideal ℘ and let x1, . . . , xt be elements in ℘M . Then {m1+x1, . . . ,mt+xt}
is also w-fold basic in M at ℘.

The idea of generalized dimension function was formally introduced by Plum-
stead ([P]). It will be best to introduce this notion at this point.

Definition 4.1.2 Suppose A is a commutative noetherian ring. Let X be a
subset of Spec(A) and let N = {0, 1, 2, . . .} be the set of all the nonnegative
integers. Let d : X → N be a function.

1. We define a partial ordering on X by defining ℘1 ≪ ℘2 if either ℘1 = ℘2

or if ℘1 ⊆ ℘2 and d(℘1) > d(℘2) for ℘1, ℘2 in X.

2. A function d : X → N is said to be a generalized dimension function if for
any ideal I of A, V (I)∩X has only a finitely many minimal elements with
respect to the partial ordering ≪.

The idea of generalized dimension is useful mainly in the natural situations.
Some examples are as follows.

Example 4.1.1 Let A be a commutative ring.

1. Let d1 : Spec(A) → N be defined as d1(℘) = dim(A/℘).

2. For an ideal I of A let d2 : V (I) → N be the restriction of d1.
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3. For an integer t let Xt = {℘ in Spec(A) : height(℘) ≤ t}. Let
d3 : Xt → N be defined as

d3(℘) = max{n : there is a chain ℘ = ℘1 ⊂ ℘2 ⊂ . . . ⊂ ℘n with ℘i ∈ Xt}.

Then d1, d2, d3 are generalized dimension functions. See ([P]) for more examples.

The following is the theorem of Eisenbud and Evans ([EE1]). We give the
generalized dimension version of the theorem which is due to Plumstead ([P]).

Theorem 4.1.1 (Eisenbud-Evans) Let A be a noetherian commutative ring
and let d : X → N be a generalized dimension function on a subset X of Spec(A).
Let M be a finitely generated A-module.

(i) Suppose µ(M℘) > d(℘) for all ℘ in X, then M has a basic element on X.

(iia) Let M ′ be a submodule of M , such that M ′ is (d(℘) + 1)-fold basic in M
at ℘, for all ℘ in X. Then M ′ contains an element that is basic in M on
X.

(iib) Let m1,m2, . . . ,mr be elements in M that are (d(℘) + 1)-fold basic in M
at ℘, for all ℘ in X. If (a,m1) is basic in A⊕M on X, then there is an
element

m′ = a2m2 + a3m3 + · · ·+ armr

for some a2, . . . , ar in A such that m1 + am′ is basic in M on X.

Remark 4.1.2 We want to emphasize that Theorem 4.1.1 applies mainly in the
natural situations as in Example 4.1.1. With d = d1, as in Example 4.1.1, it
follows from (1) that if µ(M℘) > dimA for all prime ideals ℘, then M has a
basic element.

Proof of Eisenbud-Evans Theorem 4.1.1. Since (i) follows from (iia) and
(iia) follows from (iib), we need to prove (iib) only. We shall need a few lemmas
that follow.

Lemma 4.1.1 Let X be a subset of Spec(A) and let (X, d) be a generalized
dimension function. Let M be a finitely generated A-module and N be a sub-
module. Suppose X ′ is a subset of X and ω is a nonnegative integer. Assume
that for all ℘ in X for which there is a prime ℘′ in X ′ with ℘′ 6= ℘ and ℘≪ ℘′,
N is ω-fold basic in M at ℘. Then N is ω-fold basic in M at all but finitely
many primes in X ′.
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We need the following notations that was introduced by Eisenbud and Evans.

Notations 4.1.2 For a finitely generated module M over a noetherian commu-
tative ring A and a positive integer t, define

It(M,A) =
∑

{ann(M/N) : N is a submodule of M generated by t elements}.

We also define I0(M,A) = ann(M) and I−1(M,A) = {0}.
The following are obvious:

1. It(M,A) is contained in It+1(M,A) for t = −1, 0, 1, . . ..

2. For a prime ideal ℘ of A,we have It(M,A) is contained in ℘ if and only if
µ(M℘) > t.

3. If µ(M) = t0 then It(M,A) = R for all integers t ≥ t0.

4. Since A is assumed to be noetherian, there are only finitely many ideals
It(M,A).

Proof of Lemma 4.1.1. We prove that for ℘′ in X ′, if N is not ω-fold basic in
M at ℘′, then ℘′ is minimal over It(M/N,A) ∩X with respect to ≪, for some
t and that will complete the proof by (4) of the Notations 4.1.2.

Now suppose that ℘′ is in X ′ and is not minimal over It(M/N,A)∩X for all
t. Now let µ((M/N)℘′) = r + 1 for some r = −1, 0, 1, . . .. So, Ir(M/N,A) ⊆ ℘′

and It(M/N,A) is not contained in ℘′ for all t > r, by Notations 4.1.2. By
assumption there is a prime ideal ℘ in X such that Ir(M/N,A) ⊆ ℘ ⊆ ℘′ and
d(℘) > d(℘′). So, N is ω-fold basic at ℘. Now µ((M/N)℘) ≥ r + 1. Since

r + 1 = µ(M/N)℘′) ≥ µ((M/N)℘),

we have µ((M/N)℘) = µ((M/N)℘′) = r + 1. Hence

µ((M/N)℘′) = µ((M/N)℘) ≤ µ(M℘)− ω ≤ µ(M℘′)− ω.

Therefore N is ω-fold basic in M at ℘′. This completes the proof.

Lemma 4.1.2 Suppose M is a finitely generated module over a commutative
noetherian ring A. Let {m1, . . . ,mr} be a set of elements in M . For i = 1 to k
let ωi be integers with ωi < r and let ℘1, . . . , ℘k be prime ideals in A. Suppose
{m1, . . . ,mr} is ωi-fold basic at ℘i for i = 1 to k and suppose that (a,m1) is
basic in A⊕M at ℘i for i = 1 to k. Then there are elements a1, a2, . . . , ar−1 in
A such that

1. (a,m1 + aa1mr) is basic in A⊕M at ℘i for i = 1 to k and
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2. {m1 + aa1mr,m2 + a2mr, . . . ,mr−1 + ar−1mr} is ωi-fold basic at ℘i, for
i = 1 to k.

Proof. Since for an element m′ in M , the map A ⊕M → A ⊕M that sends
(x,m) to (x,m + xm′) is an isomorphism, (1) of the lemma is valid for any
choice of a1, . . . , ar−1. So, we have to prove (2) only. Now we shall proceed by
induction on k.

If k = 0, then there is nothing to prove. So, we assume that k > 0. We can
also assume they ℘k is minimal among {℘1, . . . , ℘k} and hence

⋂k−1
i=1 ℘i 6⊆ ℘k.

Now suppose that

m′
1 = m1 + aa′1mr,m

′
2 = m2 + a′2mr, . . . ,m

′
r−1 = mr−1 + a′r−1mr

are ωi-fold basic in M at ℘i for some a′1, a
′
2, . . . , a

′
r−1 in A. We will show that

we can choose a′′1 , . . . , a
′′
r−1 in A such that

(∗)















for any c in A\℘k,
m′′

1 = m′
1 + aa′′1cmr, m

′′
2 = m′

2 + a′′2cmr, . . . ,
m′′

r−1 = m′
r−1 + a′′r−1cmr

are ωk − fold basic at ℘k.

If we choose c in
⋂k−1

i=1 ℘i\℘k then we will be done by Remark 4.1.1.
By changing notations, to prove (∗), we need to prove the following : Suppose

{m1,m2, . . . ,mr}is ω-fold basic in M at a prime ideal ℘ of A, with ω < r. And
suppose (a,m1) is basic in A⊕M at ℘. Then we can find a1, a2, . . . , ar−1 such
that for any c in A\℘, we have {m1+aa1cmr,m2+a2cmr, . . . ,mr−1+ar−1cmr}
is ω-fold basic in M at ℘.

If {m1, . . . ,mr−1} is already ω-fold basic in M at ℘, then we choose ai = 0
for i = 1 to r − 1. So, we assume that {m1, . . . ,mr−1} is not ω-fold basic at ℘.

If m̄1, . . . , m̄r−1 are the images of m1, . . . ,mr−1, respectively, in M℘/℘M℘,
then we claim that m̄1, . . . , m̄r−1 are linearly dependent inM℘/℘M℘. Otherwise
let n = µ((M/(m1, . . . ,mr−1))℘). Let x1, . . . , xn be elements in M , so that

their images in (M/
∑r−1

i=1 Ami + ℘M)℘ form a basis. Then it follows that the
images x̄1, . . . , x̄n, m̄1, . . . , m̄r−1 are linearly independent in M℘/℘M℘. Hence
n + r − 1 = µ(M℘). We also have µ((M/(m1, . . . ,mr−1))℘) > µ(M℘) − ω. So
n > n + r − 1 − ω, i.e. ω ≥ r, which is a contradiction that ω < r. Hence the
claim above is established.

So, we assume that m̄1, . . . , m̄r−1 are linearly dependent in M℘/℘M℘. Let

t = max{ℓ : m̄ℓ is a linear combination of m̄1, . . . , m̄ℓ−1 in M℘/℘M℘}.

Let at = 1 and ai = 0 for i = 1 to r − 1 with i 6= t. We let

m′′
1 = m1 + aa1cmr,m

′′
2 = m2 + a2cmr, . . . ,m

′′
r−1 = mr−1 + ar−1cmr.

We check that {m′′
1 , . . . ,m

′′
r−1} is ω-fold basic in M at ℘ for all c in A\℘. To see

this let W be the subspace of M℘/℘M℘ generated by the images of m1, . . . ,mr.
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Then it follows that W is also generated by the images of m′′
1 , . . . ,m

′′
r−1. Hence

we have,

µ((M/

r
∑

i=1

Ami)℘) = µ(M℘)− dim(W ) = µ((M/

r−1
∑

i=1

Am′′
i )℘.

The proof of Lemma 4.1.2 is complete.

The following is an obvious consequence of Lemma 4.1.2 that will be conve-
nient to use for the proof of Theorem 4.1.1.

Lemma 4.1.3 Suppose M is a finitely generated module over a commutative
noetherian ring A. Let {m1, . . . ,mr} be a set of elements in M . For i = 1 to k,
let ωi be integers and let ℘1, . . . , ℘k be prime ideals in A. Suppose {m1, . . . ,mr}
is ωi-fold basic at ℘i for i = 1 to k and suppose that (a,m1) is basic in A⊕M
at ℘i for i = 1 to k. Then there are elements a1, a2, . . . , ar−1 in A such that

1. (a,m1 + aa1mr) is basic in A⊕M at ℘i for i = 1 to k and

2. {m1+aa1mr,m2+a2mr, . . . ,mr−1+ar−1mr} is min{r− 1, ωi}-fold basic
at ℘i, for i = 1 to k.

Proof. Let us assume that ωi < r for i = 1 to k′ and that ωi ≥ r for i = k′ + 1
to k. By Lemma 4.1.2 we can find

m′′
1 = m1 + aa1mr,m

′′
2 = m2 + a2mr, . . . ,m

′′
r−1 = mr−1 + ar−1mr

such that {m′′
1 , . . . ,m

′′
r−1} is ωi-fold basic at ℘i for i = 1 to k′.

Since min{r − 1, ωi} = ωi, for i = 1 to k′, we see that {m′′
1 , . . . ,m

′′
r−1} is

min{r − 1, ωi}-fold basic at ℘i.
For i = k′+1 to k we have min{r−1, ωi} = r−1 and that {m1, . . . , . . . ,mr}

is ωi-fold basic at ℘i. It follows that, for i = k′ + 1 to k,

µ((M/

r−1
∑

1

Am′′
i )℘i

) ≤ µ((M/

r
∑

1

Ami)℘i
)+1 ≤ µ(M℘i

)−ωi+1 ≤ µ(M℘i
)−r+1.

Hence {m′′
1 , . . . ,m

′′
r−1} is min{r− 1, ℘i}-fold basic at these prime ideals as well.

So, the proof of Lemma 4.1.3 is complete.

Now we are ready to prove Theorem 4.1.1 of Eisenbud and Evans. As we
mentioned before, we prove only (iib) of Theorem 4.1.1.

Proof of (iib) of Theorem 4.1.1. We use the notations as in Theorem 4.1.1.
We define that a set of elements {n1, n2, . . . , nu} in M is d-basic if {n1, . . . , nu}
is min{u, d(℘) + 1}-fold basic in M at all ℘ in X.
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It follows that an element m in M is basic in M on X if and only if {m} is
d-basic. It also follows from the hypothesis that {m1,m2, . . . ,mr} is d-basic.

If r > 1, we will show that there are elements a1, . . . , ar−1 in A such that
{m1 + aa1mr,m2 + a2mr, . . . ,mr−1 + ar−1mr} is d-basic.

Let N =
∑r

i=1Ami. We claim that there are only finitely many primes
℘ in X such that N is not min{r, d(℘) + 2}-fold basic at ℘. To see this let
Xs = {℘ in X : d(℘) = s} for a nonnegative integer s. If ℘′ is in X and ℘′ ≪ ℘
for some ℘ in Xs with ℘ 6= ℘′, then d(℘′) > d(℘) = s. So, min{r, d(℘′) + 1} ≥
min{r, s + 2} and hence N is min{r, s + 2}-fold basic at ℘′. By Lemma 4.1.1,
there are only finitely many primes ℘ in Xs such that N is not min{r, s+2}-fold
basic at ℘. Hence the claim is established.

Let E = {℘ in X : N is not min{r, d(℘) + 2}-fold basic in M at ℘}. Since E
is finite, by Lemma 4.1.3, there are elements a1, a2, . . . , ar−1 in A such that

N ′ = A(m1 + aa1mr) +A(m2 + a2m2) + · · ·+A(mr−1 + ar−1mr)

is min(r − 1, d(℘) + 1)-fold basic at ℘, for all ℘ in E.
Now, if ℘ is in X\E, then µ((M/N)℘) ≤ µ(M℘) - min(r, d(℘)+2) and hence

µ((M/N ′)℘) ≤ µ((M/N)℘) + 1 ≤ µ(M℘)−min{r − 1, d(℘) + 1}.

So, N ′ is min{r − 1, d(℘) + 1}-fold basic at ℘.
Hence {m1+aa1mr,m2+a2mr, . . . ,mr−1+ar−1mr} is d-basic. By induction,

the proof of (iib) of Theorem 4.1.1 of Eisenbud and Evans is complete.

4.2 Applications of Eisenbud-Evans Theorem

In this section, we derive most of the main theorems about modules over noethe-
rian commutative rings, in this theory, as applications of the Eisenbud-Evans
Theorem.

First we derive the theorem of Serre about splitting projective modules.

Theorem 4.2.1 (Serre) Let A be a noetherian commutative ring of dimension
d and let P be a finitely generated projective A-module such that
rank (P℘) > d for all ℘ in Spec(A). Then P ≈ Q ⊕ A for some projective
A-module Q.

To prove this theorem, we need the following definition and the lemma.

Definition 4.2.1 Let M be a module over a noetherian commutative ring A
and let m be an element of M . We define the order ideal of m as

O(m,M) = O(m) = {f(m) : f :M → A is an A− linear map}.
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We say that m is unimodular in M if O(m,M) = A, i.e. there is an A-linear
map f : M → A such that f(m) = 1. Equivalently we have, m is a unimodular
element in M if and only if M = N ⊕Am ≈ N ⊕A for a submodule N of M . It
is also easy to see that a unimodular elment of M is also a basic element in M .

The set of all unimodular elements in M will be denoted by Um(M).

Exercise 4.2.1 Suppose A is a noetherian commutative ring.

1. Then an element (x1, x2, . . . , xn) in the free module An is a unimodular
element if and only if (x1, x2, . . . , xn) is a unimodular row.

2. For a finitely generated A-module M and m in M , we have

O(m/1, S−1M) = S−1O(m,M)

for any multiplicative subset S of A.

Lemma 4.2.1 Let P be a finitely generated projective module over a noetherian
commutative ring A and let p be in P . Then p is unimodular in P if and only
if p is basic in P .

Proof. Since P℘ is free A℘-module for all ℘ in Spec(A) the lemma follows
immediately from (1) and (2) of Exercise 4.2.1.

Proof of Serre’s Theorem 4.2.1. Let δ : Spec(A) → {0, 1, 2, . . .} be the usual
dimension function (see Example 4.1.1). Since rank (P℘) > dimA ≥ δ(℘) for all
℘ in Spec(A), by Eisenbud-Evans Theorem 4.1.1, P has a basic element p. By
Lemma 4.2.1, there is an A-linear map f : P → A so that f(p) = 1. Let Q be
the kernel of f . Then the exact sequence

0 −→ Q −→ P
f−→ A −→ 0

splits. Hence P ≈ Q⊕A. In fact, P = Q⊕Ap. So, the proof is complete.

Next we state and prove the cancellation theorem of Bass.

Theorem 4.2.2 (Bass) Let P be a finitely generated projective module over a
noetherian commutative ring A, with rank (P℘) > dimA, for all ℘ in Spec(A).
Suppose that P ⊕ Q ≈ P ′ ⊕ Q for some finitely generated projective A-modules
P ′ and Q. Then P ≈ P ′. (We say that P has the cancellation property).
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Proof. Since Q ⊕ Q′ is free, for some finitely generated A-module Q′, we can
assume, by downward induction, that Q = A. Hence we have an isomorphism
f : P ′ ⊕ A −→ P ⊕ A. Let f(0, 1) = (p, a). Since (p, a) is unimodular, it is also
basic in P ⊕A. By (iib) of Theorem 4.1.1, we can find an element p′ in P such
that p+ ap′ is basic and hence unimodular in P . Let p0 = p+ ap′, then there is
an A-linear map g : P −→ A such that g(p0) = 1. Now, we define isomorphisms
fi : P ⊕A −→ P ⊕A for i = 1, 2, 3 as follows :

1. f1(m,x) = (m+ xp′, x),

2. f2(m,x) = (m,x+ (1− a)g(m)),

3. f3(m,x) = (m− xp0, x)

for m in P and x in A.
It is easy to check that if F = f3of2of1of , then F (0, 1) = (0, 1). Hence
F (0⊕A) = 0⊕A. So, F will induce an isomorphism from P ′ ≈ (P ′⊕A)/(0⊕A)
to P ≈ (P ⊕A)/(0⊕A). Hence the proof is complete.

Remark 4.2.1 Because of Example 2.5.2, Theorem 4.2.2 of Bass is the best
possible in this generality.

The following is the theorem of Forster and Swan about the number of gen-
erators of modules.

Theorem 4.2.3 (Forster, Swan) Let M be a finitely generated module over a
noetherian commutative ring A. Let

n = max{µ(M℘) + dim(A/℘) : ℘ is a prime ideal with M℘ 6= 0}.

Then M is generated by n-elements.

Proof. By replacing A by A/ann(M), we can assume that M℘ 6= 0 for all ℘ in
Spec(A).

Let µ(M) = u > n. Then there is an exact sequence

0 −→ K −→ F −→M −→ 0

where F = Au is a free A-module of rank u. Now µ((F/K)℘) = µ(M℘) for all ℘
in Spec(A). Since u > n, we have u > µ(M℘) + dim(A/℘) for all ℘ in Spec(A).
Hence by (iia) of Theorem 4.1.1, K contains a basic element m of F . By Lemma
4.2.1, Am is a free direct summand of F . Hence F = F ′ ⊕ Am ≈ F ′ ⊕ A for
some projective A-module F ′ of rank u − 1. Since u − 1 > dimA, by Theorem
4.2.2 of Bass, F ′ is free of rank u−1. Since m is in K ,we see that F ′ maps onto
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M and hence µ(M) ≤ u − 1. This contradicts the fact that µ(M) = u. Hence
the theorem is proved.

The following theorem on the set theoretic generation of ideals was proved,
independently, by Eisenbud-Evans and Storch. For polynomial rings over fields
the theorem is due to Kronecker.

Theorem 4.2.4 (Kronecker, Eisenbud-Evans, Storch) Let A be a noethe-
rian commutative ring of dimension d and let I be an ideal of A. Then there are
elements f1, . . . , fd+1 such that

√

(f1, f2, . . . , fd+1) =
√
I. (We say that I is set

theoretically generated by f1, . . . , fd+1).

Proof. Let Ā = A/ann(I) and let M = Id+1. Then M is an Ā-module and
µ(M℘) ≥ d + 1 > dim Ā for all ℘ in Spec(Ā). Hence there is (f1, . . . , fd+1)
in Id+1 = M that is basic in M (as an Ā-module). It is easy to see that
for ℘ in Spec(A), the ideal (f1, . . . , fd+1) ⊆ ℘ if and only if I ⊂ ℘. Hence
√

(f1, . . . , fd+1) =
√
I and the proof is complete.

Remark. There is an alternative proof of Theorem 4.2.4 by usual ”prime avoid-
ance argument”. We shall be using the ”prime avoidance argument” quite ex-
tensively in our later chapters.

The following is the stable range theorem of Bass.

Theorem 4.2.5 (Bass) Let A be a commutative noetherian ring of dimension
d. Let (f1, . . . , fn) be a unimodular row in An. If n− 1 > dimA = d, then there
exist g1, g2, . . . , gn−1 in A such that (f1 + g1fn, f2 + g2fn, . . . , fn−1 + gn−1fn) is
a unimodular row.

Proof. Let F = An−1 and let m = (f1, . . . , fn−1) be in F . Since (m, fn) is
unimodular in F ⊕A and since µ(F℘) = n− 1 > d, by Eisenbud-Evans Theorem
4.1.1, there is m′ = (g1, . . . , gn−1) in F such that m+ fnm

′ is basic in F . That
means that (f1 + fng1, . . . , fn−1 + fngn−1) is a unimodular row. So, the proof
of Theorem 4.2.5 is complete.

The following is the Plumstead’s ([P]) version of Theorem 4.2.7 of Eisenbud
and Evans ([EE1]) on generators of modules.

Theorem 4.2.6 (Eisenbud-Evans) Let A be a noetherian commutative ring
and let d : X −→ N be a generalized dimension function on a subset X of
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Spec(A). Let M be a finitely generated A-module and let N be a submodule of
M . Suppose m1,m2, . . . ,mk be elements of M such that

(Am1 +Am2 + · · ·+Amk +N)℘ =M℘

for all ℘ in X. Assume that

k ≥ max{µ(M℘) + d(℘) : ℘ in X with N℘ 6⊆ ℘M℘}.

Then there exist elements m′
i = mi + ni where ni is in N ,for i = 1 to k, such

that
(Am′

1 +Am′
2 + · · ·+Am′

k)℘ =M℘

for all ℘ in X. (We say that m′
1,m

′
2, . . . ,m

′
k generate M on X).

Proof of Theorem 4.2.6. Let

N = Amk+1 +Amk+2 + · · ·+Amt

for some mk+1,mk+2, . . . ,mt in N . We will show that if t > µ(M℘′) + d(℘′) for
some ℘′ in X with mt not in ℘′M℘′ , then there are a1, a2, . . . , at−1 in A such
that

(A(m1 + a1mt) +A(m2 + a2mt) + · · ·+A(mt−1 + at−1mt))℘ =M℘

for all ℘ in X.
Let X ′ = {℘ in X : mt is not in ℘M℘} and let

t0 = max{µ(M℘) + d(℘) : ℘ in X ′}.

If t0 = 0, then X ′ is empty, i.e. mt is in ℘M℘ for all ℘ in X. If we take
a1 = a2 = · · · = at−1 = 0, then the assertion holds by Nakayama’s Lemma. So,
we assume that t > t0 > 0 and use induction on t0.

First we show that if t0 = µ(M℘)+ d(℘) for some ℘ in X ′, then ℘ is minimal
in V (Ir(M,A))

⋂

X with respect to ≪ for some r. Let µ(M℘) = u + 1. Then
it follows that Iu(M,A) ⊆ ℘ and Iu+1(M,A) 6⊆ ℘. If ℘ is not minimal over
Iu(M,A)

⋂

X for ≪, then there is ℘ in X such that Iu(M,A) ⊆ ℘′ ⊆ ℘ and
d(℘′) > d(℘). Hence µ(M℘′) = u+ 1 = µ(M℘). So,

µ(M℘′) + d(℘′) = µ(M℘) + d(℘′) > µ(M℘) + d(℘) = t0.

Since µ(M℘) = u + 1, and mt is not in ℘M℘, we see that M℘ is generated
by mt, x1, . . . , xu for some x1, . . . , xu in M . Hence M℘′ is also generated by
mt, x1, . . . xu. Since µ(M℘′) = u + 1, we have mt, x1, . . . , xu is , in fact, a
minimal set of generators of M℘′ . So, mt is not in ℘′M℘′ and hence ℘′ is
in X ′. This is a contradiction because µ(M℘′) + d(℘′) > t0. Hence we have
established that if t0 = µ(M℘) + d(℘) for some ℘ in X ′, then ℘ is minimal over
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Ir(M,A)
⋂

X for some r. Hence there are only finitely many primes ℘ in X ′

such that t0 = µ(M℘) + d(℘).
Let E = {℘ in X ′ : µ(M℘) + d(℘) = t0}. Now E is a finite set, and

m1,m2, . . . ,mt is 1-fold basic in M on E. Since (m1, 1) is basic in M ⊕ A,
by repeated application of Lemma 4.1.2, there are b2, b3, . . . , bt in A such that
m′ = m1 + b2m2 + · · ·+ btmt is basic in M on E.

Now let M ′ =M/Am′. Then for ℘ in X ′, with µ(M℘) + d(℘) = t0, we have
µ(M ′

℘) < µ(M℘). Let ”− ” bar denote the images in M ′. Then

(Am̄2 +Am̄3 + · · ·+Am̄t)℘ =M ′
℘

for all ℘ in X. Also m̄t is not in ℘M
′
℘ implies that ℘ is in X ′. Hence

t′0 = max{µ(M ′
℘) + d(℘) : ℘ in X and m̄t is not in ℘M

′
℘} < t0.

Hence by induction, there are a2, . . . , at−1 in A such that

(Am2 + a2mt + · · ·+Amt−1 + at−1mt)℘ =M ′
℘,

for all ℘ in X. Therefore

(Am′ +A(m2 + a2mt) + · · ·+A(mt−1 + at−1mt))℘ =M℘

for all ℘ in X. Write a1 = bt −
∑t−1

i=2 biai. Then m
′ = m1 + b2m2 + · · ·+ btmt =

(m1 + a1mt) + b2(m2 + a2mt) + b2(m3 + a3mt) + · · ·+ bt−1(mt−1 + at−1mt).

Hence

((A(m1 + a1mt) +A(m2 + a2mt) + · · ·+A(mt−1 + at−1mt−1)℘ =M℘

for all ℘ in X. So, the proof of Theorem 4.2.6 is complete.

The following is the original version of the theorem of Eisenbud and Evans
on generators of modules.

Theorem 4.2.7 (Eisenbud-Evans, [EE1]) Let A be a noetherian commuta-
tive ring and let M be a finitely generated A-module . Suppose N is a submodule
of M and m1,m2, . . . ,mk are elements of M such that

Am1 +Am2 + · · ·+Amk +N =M.

Assume that

k ≥ max{µ(M℘) + dim(A/℘) : ℘ in Spec(A) with N℘ 6⊆ ℘M℘}.

Then there exist elements m′
i = mi + ni where ni is in N , for i = 1 to k, such

that {m′
1,m

′
2, . . . ,m

′
k} generates M.
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Proof. Let d : Spec(A) → N be the usual dimension function (see Example
4.1.1). Now the theorem follows by a direct application of Theorem 4.2.6.

Although it is not an application of Eisenbud-Evans Theorem, this may be
the best place to give a proof of the theorem on cancellation of rank one projective
modules as follows.

Theorem 4.2.8 Let A be a noetherian commutative ring and let L be a pro-
jective A-module of constant rank one. Then L has the cancellative property,
i.e. L⊕Q ≈ L′ ⊕Q for some finitely generated projective A-modules L′ and Q
implies that L ≈ L′.

Proof. Let L ⊕ Q ≈ L′ ⊕ Q. By tensoring with L′−1 = Hom (L′, A), we get
LL′−1 ⊕ Q′ ≈ A ⊕ Q′ where Q′ = Q ⊗ L′−1. Since it is enough to prove that
LL′−1 ≈ A, we can assume that L′ = A.

So, we have L⊕Q ≈ A⊕Q. Since Q⊕Q1 ≈ An is free for some Q1, we have
L⊕An ≈ An+1 for some integer n ≥ 0.

Let f : L⊕An −→ An+1 be an isomorphism. Let

e2 = (0, 1, 0, . . . , 0), e3 = (0, 0, 1, 0, . . . , 0), . . . , en+1 = (0, 0, . . . , 1)

be the standard basis of An in L ⊕ An and let e′1, e
′
2, . . . , e

′
n+1 be the standard

basis of An+1. For x in L, let













f(x)
f(e2)
f(e3)

...
f(en+1)













= u(x)









e′1
e′2
...

e′n+1









where u(x) is an (n+1)×(n+1)- matrix in Mn+1(A). Define a map F : L −→ A
as F (x) = detu(x). Note that F is an A-linear map. Since L℘ ≈ A℘ for all ℘
in Spec(A), and f℘ : An+1

℘ −→ An+1
℘ is an isomorphism, F℘(e) is a unit in A℘

if e is a generator of L℘. Hence F℘ is an isomorphism for all ℘ in Spec(A). So,
F : L −→ A is an isomorphism. So, the proof of Theorem 4.2.8 is complete.

This proof of Theorem 4.2.8 is an improvization of the usual proof given by
taking exterior power.

4.3 The Modules over Polynomial Rings

In this section we shall discuss some of the main results, in this theory, about
modules over polynomial rings. We shall split this section under several sub-
headings.
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4.3.1 Eisenbud-Evans Conjectures

In [EE2], Eisenbud and Evans proposed three conjectures, about modules over
polynomial rings as follows.

Conjecture 4.3.1 Let R = A[X] be a polynomial ring in a single variable X
over a noetherian commutative ring A of dimension d.

Conjecture I. LetM be a finitely generated R-module with µ(M℘) ≥ d+1
for all ℘ in Spec(R). Then M has a basic element. In particular, if P is a
finitely generated projective R-module with rank (P℘) ≥ d+ 1 for all ℘ in
Spec(R), then P has a free direct summand.

Conjecture II. Let P be a finitely generated projective R-module with
rank(P℘) ≥ d+1 for all ℘ in Spec(R). Then P has the cancellative property
i.e. P ⊕ Q ≈ P ′ ⊕ Q for some finitely generated projective R-modules Q
and P ′ implies that P ≈ P ′.

Conjecture III. Let M be a finitely generated projective R-module and
let

e(M) = max{µ(M℘) + dimR/℘ : ℘ is in Spec(R) with dimR/℘ < d+ 1}

then M is generated by e(M) elements.

The Conjecture III was proved first, by Sathaye ([Sa]) for affine domains A over
infinite fields and then was proved completely by Mohan Kumar ([MK1]). Later
Plumstead ([P]) proved the conjectures I and II. Plumstead also gave a proof of
the conjecture III. In these notes we shall give the proofs of Plumstead ([P]) for
all the three conjectures above.

4.3.2 Some Preliminaries from Plumstead’s Work

The following is a version of the Quillen’s Lemma 3.1.1.

Lemma 4.3.1 (Quillen,[P],[Ma2]) Let A be a commutative ring and R be
an A-algebra (that is not necessarily commutative). Let f be an element in A
and X be a variable. Let θ be a unit in 1 +XRf [X]. Then there is an integer
k ≥ 0, such that for any g1, g2 in A with g1 − g2 in fkA, there is a unit ψ in
1 +XR[X] such that ψf (X) = θ1(g1X)θ(g2X)−1.

Further, if h : R −→ R′ is a ring homomorphism and the image of θ in R′
f [X]

is one, then ψ can be chosen with the property that the image of ψ in R′[X] is
also one.
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Proof. The first part of Lemma 4.3.1 is in fact the statement of Lemma 3.1.1.
The proof of the last part is exactly similar to the proof of Lemma 3.1.1, where
we also have h(ai) = 0 = h(bi) for all i > 0. (Here ai, bi are as in the proof of
Lemma 3.1.1.

For an A-module M we write M [X] for M ⊗A A[X]. We define isotopy of
module isomorphisms as follows. This definition of isotopy of isomorphisms is
an important idea for us.

Definition 4.3.1 Let A be a noetherian commutative ring and let M,M ′ be
A-modules. Suppose f, g : M −→ M ′ be two isomorphisms. We say that f
is isotopic to g if there is an isomorphism ϕ : M [X] −→ M ′[X], where X is a
variable, such that ϕ(0) = f and ϕ(1) = g.

Further, if h : A −→ A′ is a homomorphism of commutative rings then
we say that f is isotopic to g relative to h, if we can also chose ϕ such that
ϕ⊗A A

′ = f ⊗A A
′[X] is a constant map.

Remark 4.3.1 Most often we will consider isotopies of isomorphisms relative
to a map A −→ A/I, for an ideal I of A.

Remark 4.3.2 It is also easy to see that the isotopy of automorphisms of a
module is an equivalence relation.

The following is the Plumstead’s version of the Quillen’s Lemma 3.1.2 about
patching via isotopic isomorphisms.

Lemma 4.3.2 (Plumstead) Let A be a commutative noetherian ring and let
s1, s2 in A be such that As1 + As2 = A. Let M and M ′ be finitely generated
A-modules and let fi : Msi −→ M ′

si be isomorphisms for i = 1, 2. If (f1)s2
is isotopic to (f2)s1 , then there is an isomorphism f : M −→ M ′. Further, if
h : A −→ A′ is a homomorphism of commutative rings and (f1)s2 is isotopic to
(f2)s1 relative to h, then the isomorphism f : M −→ M ′ can be chosen such
that fsi ⊗A′ = (fi)⊗A′ for i = 1, 2.

Proof. Let g = (f2)
−1
s1 o(f1)s2 : Ms1s2 −→ Ms1s2 . If g = (g2)s1o(g1)s2 for some

isomorphisms gi :Msi −→Msi for i = 1, 2 then (f1og
−1
1 )s2 = (f2og2)s1 . In that

case, by Proposition 2.2.1, there will be an isomorphism f : M −→ M ′ with
(f)s1 = f1og

−1
1 and (f)s2 = f2og2.
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Now since g is isotopic to IdMs1s2
, there is an isomorphism

F (X) :Ms1s2 [X] −→Ms1s2 [X]

such that F (0) = Id and F (1) = g. Hence g = F (1)F (a)−1F (a) for any a in A.
We consider F as an element of End(M)s1s2 [X] and apply Quillen’s Lemma

4.3.1, for As2 −→ End(Ms1s2) with
′′f = s′′1 and then for As1 −→ End(Ms1s2)

with ′′f = s′′2 . So, there is an integer k ≥ 0 such that F (X)F (aX)−1 is in the
image of Aut(Ms2 [X]) if 1− a is in sk1A and F (aX) = F (aX)F (0X)−1 is in the
image of Aut(Ms1 [X]) if a is in sk2A. Since As1+As2 = A, we have 1 = csk1+ds

k
2

for some c, d in A. Taking a = dsk1 and X = 1, we have F (1)F (a)−1 = (g2)s1
and F (a) = (g1)s1 , for some isomorphisms gi : Msi −→ Msi for i = 1, 2. So, we
have g = (F (1)F (a)−1)F (a) = (g2)s1o(g1)s2 as desired.

For the relative case, we apply Lemma 4.3.1 relative to the maps

End(M)si −→ End(M ⊗A′)si

for i = 1, 2. In that case we can assume that F (X) ⊗ A′ is IdM⊗A′[X]. Hence
we can assume gi ⊗A′ = Id. Therefore

(f)s1 ⊗A′ = (f1og
−1
1 )⊗A′ = f1⊗A′ and (f)s2 ⊗A′ = (f2⊗g2)⊗A′ = f2⊗A′

as desired. So, the proof of Lemma 4.3.2 is complete.

The following patching lemma is a consequence of Lemma 4.3.2.

Lemma 4.3.3 (Plumstead) Let A be a commutative noetherian ring and let
R = A[X] be the polynomial ring. Let s1, s2 in A be such that As1 +As2 = A.
For two R-modules M and M ′, let

f1 :Ms1 −→M ′
s1 and f2 :Ms2 −→M ′

s2

be two isomorphisms such that (f1)s2 ≡ (f2)s1 (modulo X). Also assume that
Ms1s2 is extended from As1s2 . Then there is an isomorphism f :M −→M ′ such
that (f)si ≡ fi (modulo X).

Proof. Since Ms1s2 is extended, Ms1s2 ≈ M̄s1s2 [X], where M̄ = M/XM .
Consider ω = (f−1

2 )s1o(f1)s2 as an element of End(M̄s1s2)[X]. Clearly, ω(0) =
IdM̄s1s2

. Therefore F (T ) = ω(XT ) will define an isotopy from IdMs1s2
to ω,

relative to the map Rs1s2 −→ Rs1s2/XRs1s2 . Hence the lemma follows from
Lemma 4.3.2.

The following is a lemma of Plumstead ([P]) on patching basic elements.
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Lemma 4.3.4 (Plumstead) Let R = A[X] be a polynomial ring over a re-
duced noetherian commutative ring A and let M be a finitely generated R-
module. Let s1 and s2 in A be such that As1 + As2 = A. (Barring “ –” will
denote “(modulo X)” in this lemma). Let mi be a basic element in Msi on
Spec(Rsi) for i = 1, 2 such that m̄1 = (z)s1 and m̄2 = (z)s2 for some z in M̄ .
Let N1 =Ms1/Rs1m1 and N2 =Ms2/Rs2m2 and assume that (N1)s2 and (N2)s1
are extended projective Rs1s2 - modulus. Then there is a basic element m in M
such that m̄ = z.

Proof. Since m̄1 = (z)s1 and m̄2 = (z)s2 , we have

(N̄1)s2 ≈ M̄s1s2/As1s2z ≈ (N̄2)s1 .

We identify both (N̄1)s2 and (N̄2)s1 with N = (M̄/Az)s1s2 in the natural way.
Since (N1)s2 and (N2)s1 are extended projective modules, there is an isomor-
phism f0 : (N1)s2 −→ (N2)s1 such that f̄0 = IdN . The sequences

0 −→ Rs1s2
m1−→Ms1s2 −→ (N1)s2 −→ 0

and

0 −→ Rs1s2
m2−→Ms1s2 −→ (N2)s1 −→ 0

are split exact sequences.
We can find splittings

λ1 : (N1)s2 −→Ms1s2 of Ms1s2 −→ (N1)s2 and

λ2 : (N2)s1 −→Ms1s2 of Ms1s2 −→ (N2)s1 such that λ̄1 = λ̄2.

Using λ1 and λ2, we can define an isomorphism f : Ms1s2 −→ Ms1s2 such that
the diagram

0 −→ Rs1s2
m1−→ Ms1s2 −→ (N1)s2 −→ 0

|| ↓ f ↓ f0
0 −→ Rs1s2

m2−→ Ms1s2 −→ (N2)s1 −→ 0

commutes. After tensoring with Rs1s2/XRs1s2 , the above diagram reduces to

0 −→ R̄s1s2
z−→ M̄s1s2 −→ N −→ 0

|| ↓ f̄ ↓ Id
0 −→ R̄s1s2

z−→ M̄s1s2 −→ N −→ 0 .

Since λ̄1 = λ̄2 we have f̄ = Id.
Now let M ′ (respectively N ′) be the R-module found by patching Ms1 and

Ms2 via f (respectively Ns1 and Ns2 via f0). We get the following two fiber
product diagrams.
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R //

g′

""D

D

D

D

D

D

D

D

D

��

Rs2

��

m2

##H

H

H

H

H

H

H

H

H

M ′ //

��

Ms2

��

Rs1
//

m1

""D

D

D

D

D

D

D

D

Rs1s2

##H

H

H

H

H

H

H

H

H

Ms1
F

// Ms1s2

M ′ //

g

!!D

D

D

D

D

D

D

D

��

Ms2

��

##H

H

H

H

H

H

H

H

H

N ′ //

��

N2

��

Ms1
F

//

!!C

C

C

C

C

C

C

C

Ms1s2

##G

G

G

G

G

G

G

G

G

N1
F0

// N2s1

Here F :Ms1 →Ms1s2 is the composition map

Ms1 →Ms1s2
f→Ms1s2

and F0 : N1 → N2s1 is the composition map

F0 : N1 → N1s2
f0→ N2s1 .

In these diagrams, g′ and g are found by the properties of fiber product and
all rectangles commute. Let hi : M ′

si −→ Msi for i = 1, 2 be the natural

isomorphisms. Since (h2)s1o(h
−1
1 )s2 = f ≡ Id (modulo X), by Lemma 4.3.3

there is an isomorphism h : M ′ −→ M such that hsi ≡ hi (modulo X). Let
g′(1) = m′ and h(m′) = m. Then, it follows that m′ is basic in M ′ and hence
m is basic in M . Since (m̄)si = h(m′)si = hi(m′

i) = (z)si , it follows that m̄ = z.
This completes the proof of Lemma 4.3.4.

The following Lemma of Plumstead is about patching generators of modules
over polynomial rings.

Lemma 4.3.5 (Plumstead) Suppose R = A[X] is a polynomial ring over a
noetherian commutative ring A and let M be a finitely generated R-module.
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Let s1, s2 in A be such that As1 + As2 = A and let z1, z2, . . . , zk generate
M̄ =M/XM . (Barring “ – ” will denote “(modulo X)” in this lemma).

Let m′
1, . . . ,m

′
k generate Ms1 and let m′′

1 ,m
′′
2 , . . . ,m

′′
k generate Ms2 , such

that m̄′
i = (zi)s1 and m′′

i = (zi)s2 for i = 1 to k. For i = 1, 2 let gi : R
k
si −→Msi

be the maps defined by the corresponding generators and let Li = kernel (gi).
Assume that Ms1s2 is projective and (L1)s2 , (L2)s1 are extended. Then there
exist m1,m2, . . . ,mk in M that generate M and m̄i = zi for i = 1 to k.

Proof. The sequences

0 −→ (L1)s2 −→ Rk
s1s2

g1−→Ms1s2 −→ 0

and
0 −→ (L2)s1 −→ Rk

s1s2

g2−→Ms1s2 −→ 0

are split exact sequences (here we continue to denote (g1)s2 by g1 and (g2)s1 by
g2). Since (L1)s2 and (L2)s1 are extended and since

(L̄1)s2 = ker(ḡ1) = ker(ḡ2) = (L̄2)s1 ,

we have L1 and L2 are isomorphic. Also since ḡ1 = ḡ2, we can find splittings

λi :Ms1s2 −→ Rk
s1s2 of gi such that λ̄1 = λ̄2.

Using the splittings λ1 and λ2, and an isomorphism f0 : (L1)s2 −→ (L2)s1 , we
can define an isomorphism f : Rk

s1s2 −→ Rk
s1s2 such that the diagram

0 −→ (L1)s2 −→ Rk
s1s2

g1−→ Ms1s2 −→ 0

↓ f0 ↓ f ||
0 −→ (L2)s1 −→ Rk

s1s2

g2−→ Ms1s2 −→ 0

commutes and f̄ = Id.
Let Q be the R-module found by patching Rk

s1 and Rk
s2 via f . We get the

following fiber product diagram.

Q //

g

!!C

C

C

C

C

C

C

C

C

��

Rk
s2

��

g2

##G

G

G

G

G

G

G

G

G

M //

��

Ms2

��

Rk
s1

F
//

g1

!!C

C

C

C

C

C

C

C

Rk
s1s2

##G

G

G

G

G

G

G

G

G

Ms1
// Ms1s2
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Here F : Rk
s1 → Rk

s1s2 is the composition map

Rk
s1 → Rk

s1s2

f→ Rk
s1s2 .

The map g is found by the properties of fiber product diagrams. Since g1 and
g2 are surjective, so is g. Let fi : Qsi −→ Rk

si be the natural isomorphisms for

i = 1, 2. Since f2o(f
−1
1 ) = f̄ = Id, by Lemma 4.3.3 there is an isomorphism

h : Q −→ Rk
si such that ¯(h)s1 = f̄1 and ¯(h)s2 = f̄2. If e

′
1, . . . , e

′
k are elements of Q

that correspond to the natural basis of Rk and if g(e′i) = mi, thenm1,m2, . . . ,mk

generate M and m̄i = zi for i = 1 to k. This completes the proof of Lemma
4.3.5.

Before we give the proofs of the conjectures of Eisenbud and Evans, we give
two examples of generalized dimension functions constructed by Plumstead ([P]).

Example 4.3.1 (Plumstead) Let R be a commutative ring and let

di : Vi −→ N ,

for i = 1 to k, be generalized dimension functions on subsets Vi of Spec(R).
Define

d :

k
⋃

i=1

Vi −→ N by d(℘) = max{di(℘) : ℘ ∈ Vi for i = 1 to k}.

Then d is a generalized dimension function.

The proof of Example 4.3.1 is easy and is left to the reader.

Example 4.3.2 (Plumstead) Let A be a commutative noetherian ring and let
the radical of A contain an element s with dim(A/sA) < dimA. Then there is
a generalized dimension function d : Spec(A[X]) −→ N such that d(℘) ≤ dimA
for all ℘ in Spec(A[X]).

Proof. Let V1 = V (s) be the set of all prime ideals ℘ of Spec(A[X]) that contain
s and d1 : V1 −→ N be defined as

d1(℘) = dim(A[X]/℘)

for ℘ in V1. Let V2 be the set of all prime ideals in Spec(A[X]) of height less
than or equal to dimA. Define d2 : V2 −→ N as d2(℘) =

max{k : there is a chain ℘0 = ℘ ⊂ ℘1 ⊂ ℘2 ⊂ . . . ⊂ ℘k with ℘i in V2}.

Since d1 and d2 are generalized dimension functions and Spec(A[X]) = V1
⋃

V2,
the example follows from Example 4.3.1.
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4.3.3 The Proofs of Eisenbud-Evans Conjectures

Under this subheading we shall give the proofs of the conjectures stated in the
above subsection 4.3.1. We shall give the proofs of Plumstead ([P]). First we
prove conjecture II.

Theorem 4.3.1 (Plumstead) Let R = A[X] be a polynomial ring over a
noetherian commutative ring A and let P be a finitely generated projective R-
module with rank (P℘) ≥ dimR/℘ for all minimal primes ℘ of R. Then P
has the cancellative property, i.e. P ⊕ Q ≈ P ′ ⊕ Q for some finitely generated
projective R-modules P ′ and Q implies that P ≈ P ′.

Proof. First since Q⊕Q′ = Rk is free for some projective R-module Q, we can
assume that Q = R. Hence we have R⊕ P ≈ R⊕ P ′.

If A has any nontrivial idempotent then A ≈ A1 × A2 × . . . × Ak and R =
A[X] ≈ A1[X] × A2[X] × . . . × Ak[X] for some rings A1, A2, . . . , Ak with no
nontrivial idempotent element. Since it is enough to prove the theorem for each
Ai[X], we can assume that A has no nontrivial idempotent element. Hence we
can assume that rank (P℘) = r is constant for all ℘ in Spec(R). So, we have
rank (P℘) = r ≥ dimR for all ℘ in Spec(R).

Also note that we can assume that A is a reduced ring.
Let ϕ : R⊕ P ′ −→ R⊕ P be an isomorphism and let ϕ(1, 0) = (f, p).

Let “ – ” barring denote “(modulo X)”. Since (f, p) is unimodular in R ⊕ P ,
(f̄ , p̄) is also unimodular in A⊕ P̄ . Since rank (P̄ ) > dimA, by Theorem 4.1.1,
there is an element p0 in P such that p+ fp0 is unimodular in P̄ . We can use
this to define an automorphism ϕ′ : R⊕P −→ R⊕P such that ϕ̄′(f̄ , p̄) = (1, 0)
(see the proof of Theorem 4.2.2).

By replacing ϕ by ϕ′ϕ, we can assume that ϕ(1, 0) = (f, p) and (f̄ , p̄) = (1, 0).
So, the map g : P̄ ′ −→ P̄ defined by g(x̄) = ȳ, where ϕ(0, x) = (a, y) for x in P ′

and y in P and a in R, is an isomorphism.
Now let S = {s in A : s is not in any minimal prime ideal of A } be the set

of all nonzero divisors of A. Since

RS ≈ AS [X] ≈ (k1 × k2 × . . .× kℓ)[X],

where k1, . . . , kℓ are fields, P ′
S and PS are extended. Hence P ′

s and Ps are
extended from As for some s in S. So, there is an isomorphism h1 : P ′

s −→ Ps

such that h̄1 = gs.
Let S′ = 1+sA. Then s is in the radical of AS′ . So, by Example 4.3.2, there

is a generalized dimension function d : Spec(AS′ [X]) −→ N such that

d(℘) ≤ dimAS′ < rank(PS′)

for all ℘ in Spec(AS′ [X]). We can write f = 1 +Xf0 and p = Xp0 for some p0
in P and f0 in R. Now, (f, p0) is basic in (R⊕ P )S′ and
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rank (PS′) > d(℘) for all ℘ in Spec(AS′ [X]). By Theorem 4.1.1, there is a p′ in
PS′ such that p0 + fp′ is unimodular in PS′ . Hence there is an RS′ -linear map
λ : PS′ −→ RS′ such that λ(p0 + fp′) = 1.

Now we construct RS′-linear automorphisms

ϕi : RS′ ⊕ PS′ −→ RS′ ⊕ PS′

for i = 1 to 3 as follows :

ϕ1(a, q) = (a, q + aXp′),

ϕ2(a, q) = (a− f0λ(q), q),

ϕ3(a, q) = (a, q − a(p+ fXp′))

for (a, q) in RS′ ⊕ PS′ . It follows that

ϕ3ϕ2ϕ1(f, p) = (1, 0) and ϕ3ϕ2ϕ1(ā, q̄) = (a− f0λ(q), q̄).

Since ϕ3ϕ2ϕ1ϕ(1, 0) = (1, 0), it will induce an isomorphism h′2 : P ′
S′ −→ PS′

such that (h̄′2) = gS′ . Hence there is an element t in S′ = 1 + sA and an
isomorphism h2 : P ′

t −→ Pt such that h̄2 = (g)t.
Since (h1)t ≡ (h2)s (modulo X), we have P ′ ≈ P by Lemma 4.3.3. This

completes the proof of Theorem 4.3.1.

Now we shall prove the conjecture I.

Theorem 4.3.2 (Plumstead) Let R = A[X] be a polynomial ring over a
noetherian commutative ring A and let M be a finitely generated R-module with
µ(M℘) ≥ dim(R/℘) for all minimal prime ideals ℘ in Spec(R). Suppose z is
a basic element in M̄ = M/XM . (Again, “ – ” barring will denote “(modulo
X)”). Then M has a basic element m such that m̄ = z.

Proof. Note that it is enough to establish the theorem when A is a reduced
ring. Also note that M̄ has a basic element by Theorem 4.1.1.

First we shall assume that M is torsion free. Let

S = {s in A : s is not in any minimal prime ideal of A}

be the set of all nonzero divisors of A. We have RS ≈ k1[X] × . . . × kr[X], for
some fields k1, . . . , kr . SinceMS is torsion free it follows thatMS is a projective
RS = AS [X]-module and is extended from AS . So, we can find a basic element
m′

1 in MS such that m̄′
1 = (z)S . Also, since m

′
1 is unimodular, MS/RSm

′
1 is an

extended projective module (see Theorem 2.4.1). Hence, we can find a nonzero
divisor s1 in S and a basic element m1 in Ms1 such that
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1. m̄1 = (z)s1 ,

2. Ms1 is an extended projective Rs1 -module and

3. N1 =Ms1/Rs1m1 is also an extended projective Rs1 -module.

So, the sequence

0 −→ RS1

m1−→MS1
−→ N1 −→ 0

is a split exact sequence .

Write S′ = 1 + s1A. Then s1 is in the radical of AS′ . By Example 4.3.2,
there is a generalized dimension function

d : Spec(AS′ [X]) −→ N such that d(℘) ≤ dimAS′

for all ℘ in Spec(AS′ [X]). Let ω be an element inMS′ such that ω̄ = (z)S′ . Then
(ω,X) is basic in MS′ ⊕RS′ . Since µ((MS′)℘) > d(℘) for all ℘ in Spec(AS′ [X])
there is a ω0 in MS′ such that m′

2 = ω + Xω0 is basic in MS′ . Further, since
MS′s1 is projective, the sequence

0 −→ RS′s1

m′

2−→MS′s1 −→MS′s1/RS′s1m
′
2 → 0

is a split exact sequence. Hence

RS′s1 ⊕N1S′
≈MS′s1 ≈ RS′s1 ⊕ (MS′s1/RS′s1m

′
2).

Since rank ((N1S′
)℘) ≥ dim(RS′s1/℘) for all minimal primes ℘ in Spec(RS′s1)

by the cancellation Theorem 4.3.1, we have N1S′
≈ (MS′s1/RS′s1m

′
2).

Hence we can find an element s2 in S′ and an element m2 in Ms2 such that

1. (m2)S′ = m′
2 and m̄2 = (z)s2 ;

2. if N2 =Ms2/Rs2m2 then

0 −→ Rs2
m2−→Ms2 −→ N2 −→ 0

is an exact sequence. Also, if we invert s1 the sequence splits.

3. Further, (N1)s2 ≈ (N2)s1 are extended projective As1s2 [X]-modules.

It follows from (1) and (2) that m2 is basic in Ms2 . So, by Lemma 4.3.4, there
is a basic element m in M such that m̄ = z. So, the proof of the theorem is
complete in the case when M is torsion free.

The general case requires a little more adjustment (see ([Ma2])). Again, we
shall assume that A is reduced and let

T = {m in M : fm = 0 for some nonzero divisor f in R}
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be the torsion submodule ofM . By replacingM byM/XT , we can assume that
XT = 0. We write N =M/T . Then the following diagram

0 −→ T −→ M −→ N −→ 0

|| ↓ ↓

0 −→ T −→ M̄ −→ N̄ −→ 0

commutes and the rows are exact.

Let ω be a lift of z in M . Since (ω,X) is basic in M , by Theorem 4.1.1,
ω +Xω0 is basic in M at all the minimal primes of R, for some w0 in M . By
replacing ω by ω + Xω0, we assume that ω is basic in M at all the minimal
primes of R.

If ℘ is a minimal prime of A, then it follows that the image of ω in N(℘,X) ≈
(M/T )(℘,X) is nonzero. Hence, by Artin-Rees lemma, ω does not belong to

T(℘,X) +XkM(℘,X) for large enough k, for all minimal primes ℘ in Spec(A).

Write L = T + Rω +XkM , for some large enough integer k. Let z1 be the
image of ω in L̄. It follows that

1. z1 is basic in L̄ and L℘ ≈M℘ for all minimal primes ℘ of R;

2. T is the torsion submodule of L and, since k is large enough, the image of
z1 in L/T +XL is basic at all the minimal primes in Spec(A);

3. if ω′ is a basic element in L, with ω̄′ = z1, then ω
′ is also a lift of z. Hence

ω′ will also be a basic element of M with ω̄′ = z.

Therefore, by replacing M by L, we can assume that the image of z in
T̄ ≈M/T +XM is basic at all the minimal primes of Spec(A) and also XT = 0.

Let S be the set of all nonzero divisors of A and z0 be the image of z in N̄
where N =M/T . Since NS is torsion free, NS is an extended projective AS [X]-
module. Hence there is a basic element y′1 in NS such that ȳ′1 = (z0)S . Also note
that y′ is unimodular in NS . We can pick an element m′

1 in MS that is a lift of
y′1 and m̄′

1 = (z)S . Then m
′
1 is also unimodular in MS and MS ≈ NS ⊕ TS . We

can assume that m′
1 is in NS . So, MS/RSm

′
1 ≈ NS/RSy

′
1 ⊕ TS . So, NS/R

′
Sy

′
1

is an extended projective module.

So, we can find an s1 in S, a unimodular element y1 in Ns1 and a unimodular
element m1 in Ms1 such that

1. Ns1 is an extended projective As1 [X]-module and Ms1 ≈ Ns1 ⊕ Ts1 ;

2. m1 is in Ns1 , m̄1 = (z)s1 , image of m1 in Ns1 is y1;

3. Ns1/Rs1y1 = K1 is an extended projective As1 [X]-module and

K =Ms1/Rs1m1 ≈ K1 ⊕ Ts1 .
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Hence the sequence

0 −→ Rs1
m1−→Ms1 −→ K ≈ K1 ⊕ Ts1 −→ 0

is a split exact sequence.

Therefore

Ms1 ≈ Rs1 ⊕K ≈ Rs1 ⊕K1 ⊕ Ts1 and M̄s1 ≈ As1 ⊕ K̄1 ⊕ Ts1 .

Under this identification we have z = (1, 0, 0).
Now write S′ = 1 + s1A. As in the “torsion free case”, we can find a basic

element m′
2 in MS′ with m̄′

2 = (z)S′ . Again since

T̄ = T and m̄′
2 = (z)S′ = (1, 0, 0)

in M̄S′s = (As1 ⊕K1 ⊕ Ts1)S′ , we have m′
2 is in

RS′s1m1 ⊕K1S′ ≈ NS′s1 ⊆ NS′s1 ⊕ TS′s1 ≈MS′s1 .

Hence m′
2 is also unimodular in RS′s1m1 ⊕ (K1)S′ ≈ NS′s1 . Therefore

K ′
2 = NS′s1/RS′s1m

′
2 ≈ K1S′

by the cancellation Theorem 4.3.1.
So, as before, we can pick s2 in S′ and a basic element m2 in Ms2 such that

1. m̄2 = (z)s2 and m2 is in Rs1s2m1 ⊕K1s2 ≈ Ns1s2 ,

2. K2 = (Rs1s2m1 ⊕K1s2)/Rs1s2m2
≈ (K1)s2 are extended projective mod-

ules.

Let α : (K̄1)s2 −→ K̄2 be a fixed isomorphism and let f0 : (K1)s2 −→ K2 be
the extension of α. As in Lemma 4.3.4, we can find an isomorphism

f : Rs1s2m1 ⊕K1s2 −→ Rs1s2m1 ⊕K1s2

such that f̄ = Id and the diagram

0 −→ Rs1s2
m1−→ Rs1s2m1 ⊕K1s2 −→ K1s2 −→ 0

|| ↓ f ↓ f0

0 −→ Rs1s2
m2−→ Rs1s2m1 ⊕K2 −→ K2 −→ 0

commutes.
Since f̄ = Id and Rs1s2m1⊕K1s2 is extended, f is isotopic to identify relative

to the map Rs1s2 −→ As1s2 . As Ms1s2 ≈ Rs1s2m1⊕K1s2 ⊕Ts1s2 , we can extend
f to an isomorphism F : Ms1s2 −→ Ms1s2 by defining F (t) = t for t ∈ Ts1s2 .
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Hence F is also isotopic to identity relative to the map Rs1s2 −→ As1s2 . Also
the diagram

0 −→ Rs1s2
m1−→ Ms1s2

|| ↓ F

0 −→ Rs1s2
m2−→ Ms1s2

commutes and F̄ = Id.
Rest of the proof is similar to Lemma 4.3.4 (in this case, we have to use

Lemma 4.3.2 instead of Lemma 4.3.3). This completes the proof of Theorem
4.3.2.

Now we shall prove the conjecture III. This conjecture was first proved by
Sathaye ([Sa]) for affine domains over infinite fields and then Mohan Kumar
([MK1]) proved the conjecture completely.

Theorem 4.3.3 (Sathaye-Mohan Kumar, [Sa,MK2]) Suppose R = A[X]
is a polynomial ring over a noetherian commutative ring A and M is a finitely
generated R-module. Let k be an integer with k ≥ e(M) =

max{µ(M℘) + dim(R/℘) : ℘ is in Spec(R) and dim(R/℘) < dimR}.

Then M is generated by k elements. Further (Plumstead ([P])), if z1, z2, . . . , zk
generate M/XM , then there exist m1,m2, . . . ,mk that generate M and such
that m̄i = zi for i = 1 to k (barring “ – ” means “(modulo X)” in this theorem).

Proof. First note that M/XM = M̄ is generated by k elements by Theorem
4.2.3. Here we shall give the proof of Plumstead ([P]).

If N is the nil radical of A, then replacing A by A/N and M by M/NM , we
can assume that A is reduced.

Now we shall use induction on dimA. Assume dimA = 0. Since A is reduced,
we have A ≈ k1 × k2 × . . . × kr and A[X] ≈ k1[X] × k2[X]× . . . × kr[X] where
k1, k2, . . . , kr are fields. Since it is enough to establish the theorem for each
ki[X], we can assume that A is a field and hence R = A[X] is a principal ideal
domain. Let T = {m in M : fm = 0 for some nonzero f in R } be the torsion
submodule ofM and let F =M/T . Since F is torsion free, F is a free R-module
(see Theorem 2.4.1). Hence M ≈ T ⊕ F .

If T = 0, then since M ≈ F is free, M is extended from A. Hence the
theorem holds in this case. If T 6= 0, then there is a maximal ideal ℘0 of R such
that T℘0

6= 0 and hence µ(M℘0
) > rank F . So,

µ(M(0)) + dim(R) = rank (F ) + 1 ≤ µ(M℘0
) ≤ e(M) ≤ k.
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Therefore,
k ≥ max{µ(M℘) + dimR/℘ : ℘ in Spec(R)}.

If m′
1,m

′
2, . . . ,m

′
k in M are such that m̄′

1 = z1, m̄
′
2 = z2, . . . , m̄

′
k = zk, then

M = Rm′
1 +Rm′

2 + · · ·+Rm′
k +XM . By Theorem 4.2.7, there are elements

m1 = m′
1 + n1, . . . , mk = m′

k + nk

for n1, n2, . . . , nk in XM , such that

M = Rm1 +Rm2 + · · ·+Rmk.

Since m̄1 = z1, . . . , m̄k = zk, the theorem is established when dimA = 0.
Now we shall assume that A is reduced and dimA > 0. Again let

T = {m in M : fm = 0 for some nonzero divisor f in A}

be the torsion submodule of M and let M ′ = M/T . Suppose that we can
establish the theorem for M ′, then there are elements m′

1, . . . ,m
′
k in M ′ such

that

M ′ = Rm′
1 +Rm′

2 + · · ·+Rm′
k and m̄′

1 = z′1, m̄
′
2 = z′2, . . . , m̄

′
k = z′k

in M̄ ′ ≈ M/(T + XM), where z′1, . . . , z
′
k are, respectively, the images of the

elements z1, z2, . . . , zk in M̄ ′. Let u1, u2, . . . , uk in M be such that the images of
u1, . . . , uk in M ′ are, respectively, m′

1,m
′
2, . . . ,m

′
k. In fact, we can also assume

that ū1 = z1, ū2 = z2, . . . , ūk = zk. Hence

M =
k
∑

i=1

Rui +XM =
k
∑

i=1

Rui +X(
k
∑

i=1

Rui + T ) =
k
∑

i=1

Rui +XT.

Let J = ann (T ) be the annihilator of T and V (J) = {℘ in Spec(R) : J ⊆ ℘}.
Since T℘ = 0 for all minimal primes ℘ of R, V (J) will not contain any of the
minimal prime ideals of R. So, for ℘ in V (J), we have k ≥ µ(M℘) + dimR/℘.
By Theorem 4.2.6, there will be elements n1, n2, . . . , nk in XT such that

m1 = u1 + n1, m2 = u2 + n2, . . . , mk = uk + nk

will generate M on V (J). If ℘ is in Spec(R)\V (J), then M℘ ≈ M ′
℘ and hence

m1,m2, . . . ,mk will generate M℘. Hence M℘ = (Rm1 + · · · + Rmk)℘ for all ℘
in Spec(R). Since m̄1 = z1, . . . , m̄k = zk, the theorem is also established for M ,
assuming that the theorem holds for M ′. So, by replacing M by M ′, we assume
that M is torsion free, i.e. T = 0.

Let S = {s in A : s is not in any minimal prime ideal of A} be the set of all
nonzero divisors of A. Since AS is a finite product of fields, RS ≈ AS [X] is a finite
product of principal ideal domains. Since MS is torsion free, MS is a projective
RS-module. Since dimAS = 0, it follows that there are elements u1, u2, . . . uk
in MS that generate MS and ū1 = (z1)S , . . . , ūk = (zk)S . If L is the kernel
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of the natural map for Rk
S −→ MS that sends the standard basis e1, e2, . . . , ek,

respectively, to u1, u2, . . . , uk, then L is also an extended projective AS-module.
It follows that we can find an s in S and ω1, . . . , ωk in Ms that generate Ms and
ω̄1 = (z1)s, . . . , ω̄k = (zk)s and the kernel L1 of the natural map f1 : Rk

s −→Ms

that sends the standard basis e1, . . . , ek of Rk
s , respectively, to ω1, . . . , wk, is an

extended projective As-module.
Let S′ = 1 + sA. Then dim(A/sA) < dimA. Hence, by induction, there are

elements m′′
1 ,m

′′
2 , . . . ,m

′′
k in M so that the images of these elements in M/sM

generate M/sM and the images of m′′
i in M/(s,X)M are same as that of zi for

i = 1 to k. By modifying m′′
i , we can assume that m̄′′

i = zi for i = 1 to k. So, it
follows that

M =

k
∑

i=1

Rm′′
i + sXM and hence MS′ =

k
∑

i=1

RS′m′′
i + sXMS′ .

Let D(s) = {℘ in Spec(RS′) : s is not in ℘}. Then d(℘) = dim(RS′/℘)s will
define a generalized dimension function d : D(s) −→ N . For all ℘ in D(s), we
have d(℘) < dimR. So, k ≥ µ(M℘) + d(℘) for all ℘ in D(s). By Theorem 4.2.6,
there are elements m′

i = m′′
i + ni for ni in sXMS′ , for i = 1 to k such that

(RS′m′
1 + · · ·+RS′m′

k)℘ =M℘

for all ℘ in D(s). Also, since

MS′ =

k
∑

i=1

RS′mi + sXMS′ we have

(

k
∑

i=1

RS′m′
i

)

℘

=M℘

for all ℘ in Spec(RS′) that contain s. Hence m′
1,m

′
2, . . . ,m

′
k generate MS′ and

m̄′
1 = (z1)S′ , . . . , m̄′

k = (zk)S′ .
Now, let L′ be the kernel of the map Rk

S′ −→ MS′ that sends the stan-
dard basis e1, e2, . . . , ek of Rk

S′ , respectively, to m′
1,m

′
2, . . . ,m

′
k. Since MS′s is

projective,
MS′s ⊕ L′

s ≈ Rk
S′s ≈MS′s ⊕ L1S′ .

Also for any minimal prime ℘ of RS′s,we have k ≥ µ(M℘) + dim(RS′s/℘). So,
rank (L1S′℘) = k - rank (MS′s℘) ≥ dim(RS′s/℘). Hence by Theorem 4.3.1,
L1S′ ≈ L′

s. So, L
′
s is an extended projective AS′s-module.

It follows that we can find an element t in S′ and elements m′′
1 ,m

′′
2 , . . . ,m

′′
k

in Mt such that

1. m′′
1 ,m

′′
2 , . . . ,m

′′
k generate Mt,

2. m̄′′
1 = (z1)t, . . . , m̄

′′
k = (zk)t and

3. if L2 is the kernel of the natural map f2 : Rk
t −→ Mt that sends the

standard basis e1, e2, . . . , ek of Rk
t , respectively, to m

′′
1 ,m

′′
2 , . . . ,m

′′
k , then

L2s, L1t are extended Ast-projective modules and L2s ≈ L1t.

Now the proof of Theorem 4.3.3 is complete by Lemma 4.3.5.



Chapter 5

The Theory of Matrices

In this Chapter we shall discuss some of the basic notations and facts about
matrices and also prove two theorems of Suslin that we shall need in our later
Chapters. Although part of this theory is available in other sources (for example,
Murthy’s Notes([GM])), our approach is widely different, especially in section
5.2 and 5.3. In section 5.2, we avoid the theory of elementary matrices and
instead we talk about the subgroup of automorphisms that are isotopic to the
identity. In section 5.3, our proof of Suslin’s theorem is not what one would
find in other sources. In both these sections, the reader will once again find our
biases toward the techniques of patching isotopic isomorphisms due to Quillen
over the techniques of elementary matrices due to Suslin.

5.1 Preliminaries about Matrices

In this section A will always denote a noetherian commutative ring.

Notations 5.1.1 Let A be a commutative ring.

1. Mn(A) will denote the set of all n× n-matrices with entries in A,

2. GLn(A) will denote the group of all invertible matrices in Mn(A),

3. SLn(A) will denote the subgroup of all n × n-matrices in GLn(A) with
determinant one,

4. In or I will denote the n× n identity matrix.

Definition 5.1.1 For an element λ in A, and for i, j = 1, 2, . . . , n with i 6= j,
eij(λ) will denote the matrix whose diagonal entries are one, the (i, j)th entry
is λ and rest of the entries are zero. En(A) will denote the subgroup of SLn(A)

63
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generated by {eij(λ) : λ in A, 1 ≤ i, j ≤ n, i 6= j}. The elements of En(A) are
called elementary matrices.

Remark 5.1.1 The following is a list of standard facts :

1. En(A) = {∏m
k=1 eikjk(λk) : λk ∈ A, 1 ≤ ik, jk ≤ n, ik 6= jk} .

2. Any triangular matrix whose diagonal entries are one is an elementary
matrix.

3. If α =
∏m

k=1 eikjk(λk) is an elementary matrix, then α is isotopic to the
identity map if we consider α as an isomorphism α : An −→ An. The
isotopy is given by α(X) =

∏m
k=1 eikjk(Xλk).

4. If φ : A −→ B is a surjective ring homomorphism then the induced homo-
morphism EnA −→ EnB is surjective.

5. Given a n × m-matrix α and λ in A, then if β is got from α by adding
λ-times the ith row of α to the jth row of α, then β = ǫα for some ǫ in
En(A). A similar statement holds for columns.

6. If A is a local ring or a Euclidean ring, then SLn(A) = En(A) for all
integers n ≥ 1. More generally, if α is in Mn(A), there are ǫ1, ǫ2 in En(A)
such that ǫ1αǫ2 is a diagonal matrix.

The following are some standard results.

Lemma 5.1.1 (Whitehead) Let α and β be in GLn(A). Then there are ele-
mentary matrices ǫ1, ǫ2 in E2n(A) such that

(

α 0
0 β

)

ǫ1 =

(

αβ 0
0 In

)

and
(

α 0
0 β

)

ǫ2 =

(

β 0
0 α

)

.

Proof. Take

ǫ1 =

(

1 β − 1
0 1

)(

1 0
1 1

)(

1 β−1 − 1
0 1

)(

1 0
−β 1

)

.

It also follows that

ǫ2 =

(

α−1β 0
0 (α−1β)−1

)

is in E2n(A)
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and
(

α 0
0 β

)

ǫ2 =

(

β 0
0 α

)

.

This completes the proof of Lemma 5.1.1.

Theorem 5.1.1 (Suslin) En(A) is a normal subgroup of GLn(A) for any in-
teger n ≥ 3.

We need the following lemmas to prove Theorem 5.1.1.

Lemma 5.1.2 (Vaserstein) Let α be an r×s -matrix and β be an s×r-matrix.
Suppose I + αβ is in GLr(A). Then I + βα is in GLs(A) and

(

I + αβ 0
0 (I + βα)−1

)

is in Er+s(A).

Proof. Note that (I + βα)−1 = I − β(1 + αβ)−1α and

(

I + αβ 0
0 (I + βα)−1

)

=

(

I 0
(I + βα)−1β I

)(

I −α
0 I

)(

I 0
−β I

)(

I (1 + αβ)−1α
0 1

)

is in Er+s(A).

Corollary 5.1.1 Let v = (v1, v2, . . . , vr) and w = (w1, w2, . . . , wr), with vi, wi

in A, be two row matrices such that v1w1 + · · ·+ vrwr = 0. Then

(

1 + vtw 0
0 1

)

is in Er+1(A).

Proof. Immediate from Lemma 5.1.2.
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Corollary 5.1.2 Let v = (v1, v2, . . . , vr) and w = (w1, . . . wr), with vi, wi in A,
be two row matrices such that

∑r
i=1 wivi = 0. If wi = 0 for some i = 1 to r,

then I + vtw is in Er(A).

Proof. If wr = 0, then
∑r−1

i=1 viwi = 0. Taking v′ = (v1, . . . , vr−1) and
w′ = (w1, . . . , wr−1), it follows from Corollary 5.1.1 that

(

1 + v′tw′ Ot

O 1

)

is in Er(A), where O = (0, . . . , 0) .

But

1 + vtw =

(

1 + v′tw′ Ot

u 1

)

where u = (u1 . . . , ur−1) = vr(w1, . . . , wr−1). Hence 1 + vtw is in Er(A), by (2)
of Remark 5.1.1.

If wr 6= 0 and wi = 0 for some i < r, then by (5) of Remark 5.1.1, there is
an elementary matrix ǫ in Er(A) such that

wǫ = (w1, w2, . . . , wi−1,−wr, wi+1, . . . , wr−1, 0).

Now 1 + vtw = ǫ(I + v′w′)ǫ−1, where v′ = ǫ−1vt and w′ = wǫ and the proof of
Corollary 5.1.2 is complete.

Proposition 5.1.1 Let v = (v1, . . . vr) in Ar be a unimodular element. Let
ψ : Ar −→ A be the map such that φ(ei) = vi, where e1, . . . , er is the standard
basis of Ar. Then the kernel of φ = K is generated by the set

{vjei − viej |1 ≤ i < j ≤ r}.

Proof. Let u = (u1, . . . , ur) be in Ar be such that uvt = 1. If w = (w1, . . . , wr)
is in the kernel of ψ then w =

∑r
i=1 wiei =

∑r
i=1 wi(ei − viu).

So, e1 − v1u, . . . , er − vru generate the kernel of ψ.
Now we have ei − viu =

∑r
k=1,k 6=i uk(vkei − viek). This completes the proof

of Proposition 5.1.1.

Corollary 5.1.3 Let v = (v1, . . . , vr) be a unimodular row in Ar and w =
(w1, . . . , wr) be in Ar such that w1v1 + · · ·+wrvr = 0. If r ≥ 3, then I + vtw is
in Er(A).

Proof. By Proposition 5.1.1

w =
∑

i<j

aij(viej − vjei) =
∑

i<j

wij ,
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where wij = aij(viej − vjei). It follows from Corollary 5.1.2 that I + vtwij is in
Er(A). But

I + vtw = I +
∑

i<j

vtwij =
∏

i<j

(I + vtwij).

Hence the proof of Corollary 5.1.3 is complete.

Now we are ready to give the proof of Suslin’s Theorem 5.1.1.

Proof of Suslin’s Theorem 5.1.1. Since En(A) is generated by

{eij(λ) : 1 ≤ i, j ≤ n with i 6= j and λ ∈ A},

it is enough to show that for any α in GLn(A) we have αeij(λ)α
−1 is in En(A).

One can check that αeij(λ)α
−1 = I + λαiβj , where αi is the ith column of α

and βj is the jth row of α−1. Since βjαi = 0 for i 6= j, we have I + λαiβj is in
En(A) by Corollary 5.1.3. So, the proof of Theorem 5.1.1 is complete.

Remark 5.1.2 With A = k[X,Y ] where k is a field, E2(A) is not a normal
subgroup of GL2(A). For a proof one can see Murthy’s Notes ([GM]).

5.2 The Isotopy Subgroup QLn(A) of GLn(A)

In this section we shall prove the “Isotopy analogue” of the following theorem
of Suslin ([S]).

Theorem 5.2.1 (Suslin) Let R = k[X1, . . . , Xm] be a polynomial ring over k,
where k = Z or a field. Then SLn(R) = En(R) for n ≥ 3.

For our purpose an “isotopy analogue” of this Theorem 5.2.1 will suffice. So,
we omit the proof of Theorem 5.2.1. For a proof of Theorem 5.2.1 one can see
Murthy’s note ([GM]).

The following proposition gives some elementary facts about isotopy.

Proposition 5.2.1 Suppose A is a commutative ring.

(i) Suppose αi : M −→ M ′ and βi : M ′ −→ M ′′ are isomorphisms of A-
modules, for i = 0, 1. If α0 is isotopic to α1 and β0 is isotopic to β1 then
β0oα0 is isotopic to β1oα1.
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(ii) If M is an A-module then

QL(M) = {α ∈ Aut(M) : α is isotopic to IdM}

is a normal subgroup of Aut(M).

(iii) Let M be an A-module and α, β, γ be in Aut(M). If α is isotopic to β and
β is isotopic to γ then α is isotopic to γ.

Proof. If α(T ) :M [T ] −→M ′[T ] is an isotopy from α0 to α1 and if

β(T ) :M ′[T ] −→M ′′[T ]

is an isotopy from β0 to β1 then β(T )oα(T ) is an isotopy from β0oα0 to β1oα1.
This establishes (i). Now it follows from (i) that QL(M) is closed under com-
position. Again, if α is in QL(M) and α(T ) is an isotopy from IdM to α then
α(T )−1 is an isotopy from IdM to α−1. Hence QL(M) is a subgroup of Aut(M).
If β is in Aut(M) and β1 = β ⊗ IdA[T ] and if α(T ) is an isotopy from IdM to

α1, then β−1
1 oα(T )oβ1 is an isotopy from IdM to β−1αβ. Hence QL(M) is a

normal subgroup of Aut(M). So, the proof of (ii) is complete. To see (iii), let
I1(T ) be an isotopy from α to β and I2(T ) be an isotopy from β to γ and let
β1(T ) = β−1 ⊗ A[T ]. Then γ(X) = I1(T )oβ1(T )oI2(T ) is an isotopy from α to
γ. This establishes (iii).

Definition 5.2.1 Let A be a commutative ring and let

QLn(A) = {α in GLn(A) : α is isotopic to identity}.

It follows from Proposition 5.2.1 that QLn(A) is a normal subgroup of GLn(A).
This subgroup QLn(A) will be called the isotopy subgroup of GLn(A). Note that
if A is a reduced ring then QLn(A) is in fact a subgroup of SLn(A).

More generally, for an A-module M we let

QL(M) = {α : α is an automorphism of M that is isotopic to IdM}.

It follows from Proposition 5.2.1 that QL(M) is a normal subgroup of the group
of automorphisms of M .

The following is the isotopy analogue of Theorem 5.2.1 of Suslin

Theorem 5.2.2 Let R = k[X1, . . . , Xn] be a polynomial ring over k, where
k = Z or a field. Then SLn(R) = QLn(R).
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Proof. Let α = α(X1, . . . , Xn) be in SLn(R), then α(X1T,X2T, . . . ,XnT ) is
in SLn(R[T ]) and is an isotopy from α0 = α(0, . . . , 0) to α. Since α0 is in
SLn(k) = En(k), we have α0 is isotopic to identity, by (3) of Remark 5.1.1.
Hence α is isotopic to identity by Proposition 5.2.1. This completes the proof of
Theorem 5.2.2.

We shall need the following proposition in the latter sections.

Proposition 5.2.2 Let R = Z[X1, X
−1
1 , X2, . . . , Xn] be a Laurent polynomial

ring with one Laurent polynomial variable X1 and n − 1 polynomial variables
X2, . . . , Xn. Then SLn(R) = QLn(R).

Proof. Let

α = α(X1, X
−1
1 , X2, . . . , Xn)

be in SLn(R). Since α(X1, X
−1
1 , X2T, . . . ,XnT ) = β(T ) gives an isotopy from

α(X1, X
−1
1 , 0, . . . , 0) to α, we can assume n = 1 and R = Z[X,X−1].

Now suppose that α is in SLn(Z[X,X−1]). Then β = Xpα is in Mn(Z[X])
for some integer p ≥ 0. Let det β = Xk. We claim that β = ǫδ for some ǫ in
QLn(Z[X,X−1]) and a diagonal matrix δ in GLn(Z[X,X−1]). We shall prove
the claim by induction on k. If k = 0, then β is in SLn(Z[X]) = QLn(Z[X]) by
Theorem 5.2.2 and hence in QLn(Z[X,X−1]).

Now suppose k > 0 and let “bar” denote “(modulo X)”. So, det(β̄) = 0. By
(6) of Remark 5.1.1, there are ǫ1, ǫ2 in En(Z) such that ǫ1β̄ǫ2 = diag(d1, . . . , dn).
Since d1d2 . . . dn = det(ǫ1β̄ǫ2) = 0, we can assume that dn = 0. Hence ǫ1β̄ǫ2 =
diagonal(d1, . . . , dn−1, 0). For i = 1, 2 let Ei be in En(Z[X]) such that Ēi =
ǫi. Since Ē1β̄Ē2 = diagonal(d1, . . . , dn−1, 0) the last column of E1βE2 is a
multiple of X. Write β1 = E1βE2(digonal(1, 1, . . . , 1, X

−1)). Then β1 is in
Mn(Z[X]) and det β1 = Xk−1. Therefore, by induction, β1 = ǫδ for some ǫ
in QLn(Z[X,X−1]) and δ is a diagonal matrix in GLn(Z(X,X−1]). So, β =
E−1

1 β1DE
−1
2 = E−1

1 ǫδDE−1
2 , where D = diagonal(1, 1, . . . , 1, X). Let

ǫ′ = E−1
1 ǫ(δDE−1

2 D−1δ−1) and δ′ = δD.

Then β = ǫ′δ′. Since En(Z[X,X−1]) ⊆ QLn(Z[X,X−1]) and QLn(Z[X,X−1])
is a normal subgroup of SLn(Z[X,X−1]), ǫ′ is in QLn(Z[X,X−1]) and also δ′

is a diagonal matrix in GLn(Z[X,X−1]). Hence the claim is established.

Therefore α = X−pβ = X−pǫδ = ǫ(X−pδ), where ǫ is in QLn(Z[X,X−1])
and δ is a diagonal matrix in GLn(Z[X,X−1]). Since det(Xpδ) = det α = 1,
it follows from Lemma 5.1.1 that Xpδ is in En(Z[X,X−1]) ⊆ QLn(Z[X,X−1]).
Hence the proof of Proposition 5.2.2 is complete.
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5.3 The Theorem of Suslin

In this section we prove the following theorem of Suslin on completion of uni-
modular rows to an invertible matrix.

Theorem 5.3.1 (Suslin) Let A be a commutative ring and (x0, x1, . . . , xn) be
a unimodular row in Un+1(A). Let r0, r1, . . . , rn be positive integers such that
the product r0r1 · · · rn is divisible by n!. Then (xr00 , x

r1
1 , . . . , x

rn
n ) is completable

to an invertible matrix.

To prove Theorem 5.3.1, first we prove the following proposition.

Proposition 5.3.1 Let (x0, x1, . . . , xn) be a unimodular row in Un+1(A). Let
Ā = A/(xn) and let “–” bar denote the images in Ā. If (x̄0, . . . , x̄n−1) is com-
pletable to an invertible matrix inMn(Ā), then (x0, . . . , xn−1, x

n
n) is completable

to an invertible matrix in Mn+1(A).

Proof. Let φ be a matrix in Mn(A) such that the first column of φ is
(x0, . . . , xn−1)

t and φ̄ is in GLn(Ā). Let ψ be in Mn(A) be such that ψ̄ is
the inverse of φ̄. Hence φψ = In + xnα and ψφ = In + xnβ for α, β in Mn(A).

Since
(

φ α
xnIn ψ

)(

ψ −β
−xnIn φ

)

=

(

In −φβ + αφ
0 In

)

,

we have

W1 =

(

φ α
xnIn ψ

)

is in GL2n(A).
Note that A(det(φ)) + Axn = A . Hence, by Lemma 5.1.1, there is an ǫ in

En(A) such that

w1 =

(

xnn 0
0t In−1

)

≡ xnǫ modulo (det(φ)A).

Hence w1 = xnǫ + (detφ)µ for some µ in Mn(A). If γ = µ(adjφ), then γφ =
(detφ)µ.

Now

W2 =

(

In 0
γ ǫ

)(

φ α
xnIn ψ

)

=

(

φ α
w1 αγ + ǫψ

)

is in GL2n(A). It follows that

W2 =

(

φ2 α2

w2 ψ2

)

where
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1. φ2 is in GLn+1(A), with its first column (x0, x1, . . . , xn−1, x
n
n)

t,

2. α2, ψ2 are in Mn−1(A) and

3. w2 = (0t, In−1, λ) is an (n − 1) × (n + 1)-matrix, where 0t = (0, 0, . . . , 0)
and λ = (λ1, λ2, . . . , λn−1)

t for some λ1, . . . , λn−1 in A.

By repeated use of (5) of Remark 5.1.1, it follows that there are ǫ1 and ǫ2 in
E2n(A) such that

ǫ1W2ǫ2 =

(

φ3 0
0 In−1

)

in GL2n(A), where φ3 is in GLn+1(A), with (x0, . . . , xn−1, x
n
n)

t as its first col-
umn. This completes the proof of Proposition 5.3.1.

The following is an immediate Corollary to Proposition 5.3.1.

Corollary 5.3.1 Let (x0, x1, . . . , xn) be a unimodular row in Un+1(A). Then
(x0, x1, x

2
2, . . . , x

n
n) is completable to an invertible matrix.

Now the proof of Theorem 5.3.1 will follow from Corollary 5.3.1, by “shifting”
the exponents as follows.

Lemma 5.3.1 Let (x0, x1, . . . , xn) be a unimodular row in Un+1(A) and let r
be a nonnegative integer. Then there is an invertible matrix α such that

(xr0, x1, x2, . . . , xn)α = (x0, x
r
1, x2, . . . , xn).

To prove Lemma 5.3.1, we need the following lemma.

Lemma 5.3.2 Suppose (x0, x1, . . . , xn) is a unimodular row in Un+1(A). Let T
be an indeterminate and r be a nonnegative integer. Then the kernel P of the
map

A[T ]n+1 → A[T ],

defined by the unimodular row

(xr0, x1 + x0T, x2, . . . , xn)

is an extended projective module.
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Proof. By Quillen’s theorem, we can assume that A is local. Let m be the
maximal ideal of A. If one of x0, x2, . . . , xn does not belong to m then P is free
by Exercise 2.6.1. So, we assume that x0, x2, . . . , xn are in m and hence x1 is a
unit in A. Since x1 is a unit, it follows that (xr0, x1 + x0T ) is a unimodular row
in A[T ]2. Since unimodular rows of length two are completable to an invertible
matrix, there is an invertible matrix α0 in SL2(A[T ]) ⊆ GLn+1(A[T ]) such that
(xr0, x1+x0T, x2, . . . , xn)α0 = (1, 0, x2, . . . , xn). Hence there is an α in GLn+1(A)
such that (x0, x1 + x0T, x2, . . . , xn)α = (1, 0, . . . , 0). So, P is free by Exercise
2.6.1. and the proof of Lemma 5.3.2 is complete.

Proof of Lemma 5.3.1. By Lemma 5.3.2, there is an exact sequence

0 −→ P0[T ] −→ A[T ]n+1 φ−→ A[T ] −→ 0

of A[T ]-modules, where T is an indeterminate, φ : A[T ]n+1 → A[T ] is the map
defined by the unimodular row (xr0, x1 + x0T, x2, . . . , xn) and P0 is a projective
A-module. Specializing, respectively, at T = 0,−1 we get the following two
exact sequences

0 −→ P0 −→ An+1 φ0−→ A −→ 0

0 −→ P0 −→ An+1 φ−1−→ A −→ 0

where φ0 : An+1 → A is the map defined by (xr0, x1, x2, . . . , xn) and
φ−1 : An+1 → A is the map defined by (xr0, x1 − x0, x2, . . . , xn).

It follows that there is an α1 in GLn+1(A) such that

(xr0, x1, x2, . . . , xn)α1 = (xr0, x1 − x0, x2, . . . , xn).

By adding xr−1
1 +xr−2

1 x0+· · ·+xr−1
0 -times the second column to the first column

we get that there is an α2 in GLn+1(A) such that

(xr0, x1 − x0, . . . , xn)α2 = (xr1, x1 − x0, . . . , xn).

Hence we have

(xr0, x1, x2, . . . , xn)α1α2 = (xr1, x1 − x0, x2, . . . , xn).

Similarly, working with the unimodular row (x1, x1 − x0, x2, . . . , xn), we get an
α3 in GLn+1(A) such that

(xr1, x1 − x0, . . . , xn)α3 = (xr1,−x0, . . . , xn).

It is also easy to see that there is an α4 in GLn+1(A) such that

(xr1,−x0, . . . , xn)α4 = (x0, x
r
1, . . . , xn).

Hence we have (xr0, x1, x2, . . . , xn)α1α2α3α4 = (x0, x
r
1, x2, . . . , xn). This com-

pletes the proof of Lemma 5.3.1.



Chapter 6

Complete Intersections

In this Chapter we shall be concerned with the set theoretic and ideal theoretic
number of generators of ideals in polynomial rings over commutative noetherian
rings. As before, for a module M over a noetherian commutative ring A, µ(M)
will denote the minimal number of generators of M .

6.1 The Foundations of Complete Intersections

Definition 6.1.1 Suppose I is an ideal in a noetherian commutative ring A.
We say that I is set theoretically generated by r elements f1, . . . , fr in A if
√

(f1, . . . , fr) =
√
I.

Remark 6.1.1 It follows from Theorem 4.2.4 that any ideal I in a noetherian
commutative ring A of dimension d is set theoretically generated by d + 1 ele-
ments.

The following is a theorem of Eisenbud and Evans ([EE3]).

Theorem 6.1.1 (Eisenbud-Evans) Suppose R = A[X] is a polynomial ring
over a commutative noetherian ring A with dimA = d. Then any ideal I of R
is set theoretically generated by d+ 1 elements.

Proof. Although the theorem can be derived from Theorem 4.3.2, we give the
original proof of Eisenbud-Evans. We use induction on d. We can also assume
that A is reduced.

If d = 0 then A[X] = k1[X]× . . .× kr[X], where k1, . . . , kr are fields. Hence
A[X] is a principal ideal ring. So, I is generated by one element.

73
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Now assume d > 0. Let S be the set of all nonzero divisors of A. Then
S−1R = (S−1A)[X] ≈ k1[X]× . . .× kr[X], where k1, . . . , kr are fields. So, S−1I
is one generated. So, there is f0 in I and s in S such that Is = (f0)As[X].
Let Ā = A/(s) and J be the image of I in Ā[X]. Since dim Ā < d, there are

f1, . . . , fd in I such that
√

f1Ā+ · · ·+ fdĀ =
√
J . It is easy to check that

√

(f0, f1, . . . , fd) =
√
I. So, I is set theoretically generated by d + 1 elements.

This completes the proof of Theorem 6.1.1.

Definition 6.1.2 Let A be a noetherian commutative ring.

(1) A sequence of elements a1, . . . , ar is called a regular sequence if ai is a
nonzero divisor on A/(a1, . . . , ai−1), for i = 0, . . . , r − 1.

(2) An ideal I is called a complete intersection ideal of height r if I is generated
by a regular sequence a1, . . . , ar of length r.

(3) An ideal I of A is said to be a locally complete intersection ideal of height r
if I℘ is a complete intersection ideal of height r for all ℘ in V (I) = {℘ in
Spec(A) : I ⊆ ℘}.

Exercise 6.1.1 Suppose I is an ideal in a ring A.

(1) If I is a complete intersection ideal of height r, then I/I2 is a free A/I-
module of rank r.

(2) If I is a locally complete intersection ideal of height r, then I/I2 is a pro-
jective A/I-module of rank r.

Proof. To prove (1) let I be generated by a regular sequence a1, a2, . . . , ar. Then
it is easy to check that the images of a1, . . . , ar form a basis of I/I2. And (2)
follows from (1).

Remark 6.1.2 Let A be a commutative noetherian ring.

(1) It follows from Forster-Swan Theorem 4.2.3 that a locally complete inter-
section ideal I of height r in A is generated by dimA+ 1 elements.

(2) It also follows from Theorem 4.3.3 that a locally complete intersection ideal
I of height r in a polynomial ring R = A[X] is generated by dimA + 1
elements.

The following is a consequence of Nakayama’s lemma.
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Theorem 6.1.2 (see[MK1]) Let I be an ideal in a noetherian commutative
ring A. Then µ(I/I2) ≤ µ(I) ≤ µ(I/I2) + 1. Further, if x is an element in A,
then µ((I, x)) ≤ µ(I/I2) + 1.

Also , if A is a local ring then µ(I) = µ(I/I2).

Proof. Let µ(I/I2) = r and I = (f1, . . . , fr) + I2. By Nakayama’s lemma,
there is an s in I such that (1 + s)I ⊆ (f1, . . . , fr). It is easy to check that
(I, x) = (f1, . . . , fr, s + (1 + s)x). The local case is easy. This completes the
proof of Theorem 6.1.2.

Exercise 6.1.2 Let R = k[X1, . . . , Xn] be a polynomial ring in n variables over
a field k. Then any maximal ideal of R is generated by n elements.

Proof. One way to prove Exercise 6.1.2 will be to use the change of variables
Theorem 6.1.5 below and induction.

The following is a theorem of Ferrand and Szpiro that is very central in this
theory of set theoretic complete intersections.

Theorem 6.1.3 (Ferrand-Szpiro) Let A be a noetherian commutative ring
and let I be a locally complete intersection ideal of height r ≥ 2 and dimA/I ≤ 1.
Then there is a locally complete intersection ideal J of height n such that

1.
√
I =

√
J and

2. J/J2 is free A/J-module of rank r.

Proof. Since rank I/I2 = r and dim(A/I) ≤ 1, by Theorem 4.2.1, I/I2 = F⊕L
where L is a projective A/I-module of rank one and F is a free A/I-module of
rank r− 1. Since I/I2 ⊗ L has a free direct summand (Theorem 4.2.1), there is
a surjective map φ : I/I2 −→ L−1, where L−1 = Hom(L,A/I). Let J be the
ideal of A such that J/I2 = kernel (φ).

Since I2 ⊆ J ⊆ I we have
√
I =

√
J . We will see that J is a locally complete

intersection ideal of height r. To see this let ℘ be a prime ideal in V (I) = V (J).
Let fr be an element in I℘ be such that image of fr in L−1

℘ , via φ, generates
L−1
℘ and let f1, . . . , fr−1 be in J℘ be such that their images generate (J/I2)℘.

So, I℘ = (f1, f2, . . . , fn−1, fr) + I2℘ and hence I℘ = (f1, f2, . . . , fr−1, fr). By
induction, we shall prove that for 1 ≤ i ≤ r there are g1, . . . , gi in I℘ such that

1. I℘ = (g1, . . . , gi, fi+1, . . . , fr),

2. g1, . . . , gi is a regular sequence and
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3. gj − fj is in J2
℘ for j = 1 to i.

To do this we assume that the assertions holds for i < r and prove the assertions
for i+ 1. We write A′ = A℘, I

′ = I℘, J
′ = J℘. Let ℘1, . . . , ℘k be the associated

primes of A′/(g1, . . . , gi)A
′ and let P1, . . . , Pt be maximal elements in the set

{℘1 . . . , ℘k}. For k = 1 to t, since depth A′
Pk

= i < r and since I ′ is generated
by a regular sequence of length r, it follows that I ′ is not contained in Pk. Hence
J ′ is not contained in Pk for k = 1 to t. Assume that fi+1 is in P1, . . . , Pt0 and
not in Pt0+1, . . . , Pt and let λ be in J ′2

⋂

Pt0+1

⋂

. . .
⋂

Pt\P1

⋃

. . .
⋃

Pt0 and
let gi+1 = fi+1 + λ. So, I ′ = (g1, . . . , gi, gi+1, fi+2, . . . , fr) + I ′2 and hence
I ′ = (g1, . . . , gi+1, fi+2, . . . , fr). This establishes the assertion.

Hence there are g1, . . . , gr such that

1. I ′ = (g1, . . . , gr),

2. g1, . . . , gr is a regular sequence,

3. the images of g1, . . . , gr−1 generate J ′/I ′2 and the image of gr generates
L−1
℘ .

Note that g2r is in J ′. Now if g is in J ′ then g−(λ1g1+ · · ·+λr−1gr−1) is in I
′2 =

(g1, . . . , gr)
2 for some λ1, . . . , λr−1 in A′. Hence g is in (g1, . . . , gr−1, g

2
r). So,

J ′ = (g1, . . . , gr−1, g
2
r) is generated by a regular sequence of length r. Therefore

J is a locally complete intersection ideal of height r.
Now we shall prove that J/J2 is a free A/J-module of rank r. Note that I/J

is nilpotent in A/J and hence it is enough to prove that J/J2 ⊗A/I ≈ J/IJ is
a free A/I-module.

We have the following two exact sequences

0 −→ J/I2 −→ I/I2 −→ L−1 −→ 0

and

0 −→ I2/IJ −→ J/IJ −→ J/I2 −→ 0

of projective A/I-modules. Also note that

L−1 ≈ I/J and L−2 ≈ I/J ⊗ I/J ≈ I2/IJ.

Again by Theorem 4.2.1 J/IJ ≈ F ⊕ L0 for some projective A/I-module L0 of
rank one. It is enough to prove that L0 ≈ A/I. We have J/I2 ⊕ L−1 ≈ I/I2 ≈
F ⊕ L and L−2 ⊕ J/I2 ≈ J/IJ ≈ F ⊕ L0. So,

L−2 ⊕ (F ⊕ L) ≈ L−2 ⊕ (J/I2 ⊕ L−1) ≈ F ⊕ L0 ⊕ L−1.

By Theorem 4.2.2 of Bass, L−2 ⊕ L ≈ L0 ⊕ L−1. Now Theorem 6.1.3 follows
from the cancellation property of rank one projective modules (Theorem 4.2.8)
and the following Lemma 6.1.1. This completes the proof of Theorem 6.1.3.
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Lemma 6.1.1 Let A be a noetherian commutative ring with dimA ≤ 1. Let
L1 and L2 be two rank one projective A-modules. Then L1 ⊕ L2 ≈ A⊕ L1L2.

Proof. Without loss of generality, we can assume that A is reduced. Let S be
the set of all nonzero divisors of A. Since S−1L1 ≈ S−1A, we can assume that
L1 = I1 is an ideal of A. By Theorem 4.1.1, there is an f is Hom(L2, A) that
is basic on V (I1) and also at all the minimal primes of A. Let f(L2) = I2, then
L2 ≈ I2 and I1 + I2 = A. Hence we have an exact sequence

0 −→ I1
⋂

I2 −→ I1 ⊕ I2 −→ A −→ 0 .

Since I1
⋂

I2 = I1I2 ≈ L1L2, the proof of Lemma 6.1.1 is complete.

Remark. The argument used in picking g1, . . . , gn−1 in the proof of Theorem
6.1.3 is known as the prime avoidance argument. As an exercise, an interested
reader can prove Theorem 4.2.4 by using such prime avoidance arguments.

The following is another central theorem in this theory, which is due to
Boratynski.

Theorem 6.1.4 (Boratynski) Let A be a commutative ring and let I be an
ideal in A such that I = (f1, . . . , fn) + I2. Let J = (f1, . . . , fn−1) + I(n−1)!.
Then J is the image of a projective A-module P of rank n.

Proof. It follows from Nakayama’s lemma that there is an s in I such that

I1+s = (f1, . . . , fn) and hence J1+s = (f1, . . . , fn−1, f
(n−1)!
n ).

Let φ1 : An
1+s −→ J1+s be the map defined by φ(ei) = fi for i = 1 to n − 1

and φ(en) = f
(n−1)!
n , where e1, . . . , en is the standard basis of An

1+s.

Let φ2 : An
s −→ Js = As be the map defined by φ(e1) = 1 and φ(ei) = 0 for

i = 2 to n.

Since (f1, . . . , fn−1, f
(n−1)!
n ) is unimodular in An

s(1+s), by Suslin’s Theorem

5.3.1, there is an invertible matrix θ in SLn(As(1+s)) such that first row of θ is

(f1, . . . , fn−1, f
(n−1)!
n ).

Now consider the following fiber product diagram :
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Q //

φ
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G

G

G

G

G

G

G

G

G

��

An
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��

φ2
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L

L

L

L

L

L

L

L

L

L

L

J //

��

Js

��

An
1+s

F
//

φ1

""E

E

E

E

E

E

E

E

E

An
s(1+s)

%%K

K

K

K

K

K

K

K

K

K

J1+s
// Js(1+s) .

Here F : An
1+s → An

s(1+s) is the composition map

An
1+s → An

s(1+s)
θ→ Ans(1 + s).

In this diagram Q is the fiber product of An
1+s and An

s via θ. The map
φ : Q −→ J is got by the properties of fiber product diagrams and φ is surjective
because so are φ1 and φ2. Also note that Q is a projective A-module of rank
n because Qs ≈ An

s and Q1+s ≈ An
1+s. This completes the proof of Theorem

6.1.4.

Before we close this section we prove the following change of variables the-
orem that we shall need in the later sections.

Theorem 6.1.5 (Suslin) Let R = A[X1, . . . , Xn] be a polynomial ring over a
noetherian commutative ring A and let I be an ideal in R such that
height(I) > dimA. Let φ : R −→ R be the A-algebra automorphism such that

φ(Xi) = Xi +Xri
n for i = 1, . . . , n− 1 and

φ(Xn) = Xn,

where r1, . . . , rn−1 are nonnegative integers. If r1, . . . , rn−1 are large enough then
φ(I) contains a monic polynomial in Xn with coefficients in A[X1, . . . , Xn−1].
In particular, if A is a field then for any nonzero polynomial f in R, φ(f) is a
monic polynomial in Xn with coefficients in A[X1, . . . , Xn−1].

We shall use induction on n to prove Theorem 6.1.5. First, we need the
following lemma.

Lemma 6.1.2 Let R = A[X] be a polynomial ring over a noetherian commu-
tative ring A and I be an ideal in R. Let ℓ(I) =

{a ∈ A : there is f = aXn + an−1X
n−1 + · · ·+ a0 ∈ I with an−1, . . . , a0 in A}.
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Then ℓ(I) is an ideal in A and height(ℓ(I)) ≥ height(I).

Proof. It is obvious that ℓ(I) is an ideal. Further, since ℓ(
√
I) ⊆

√

ℓ(I), we
can assume that I is a reduced ideal. Let I = ℘1

⋂

. . .
⋂

℘k where ℘1, . . . , ℘k

are minimal primes over I. As ℓ(℘1)ℓ(℘2) . . . ℓ(℘k) ⊆ ℓ(I), it is enough to prove
the lemma for prime ideals I. If I is an extended prime ideal then I = ℓ(I)R
and hence height(I) = height(ℓ(I)). If I is not an extended ideal then let
℘ = I

⋂

A. So, ℘R 6= I and height(℘) = height(I) − 1. Note that ℘ ⊆ ℓ(I).
Let ℘′ be a minimal prime ideal over ℓ(I). As height(℘′) = height(℘) would
imply that ℓ(I) = ℘ and I = ℘R is extended, we have height(℘′) > height(℘) =
height(I)− 1. This completes the proof of Lemma 6.1.2.

Proof of Theorem 6.1.5. If n = 1 then height(ℓ(I)) ≥ height(I) > dim(A).
So, ℓ(I) = A and hence I contains a monic polynomial.

Now assume that n > 1. Write R = A′[X1] where A
′ = A[X2, . . . , Xn]. Let

ℓ(I) =

{a ∈ A′ : there is f = aXn
1 +an−1X

n−1
1 + · · ·+a0 ∈ I with an−1, . . . , a0 in A

′}.

Since height (ℓ(I)) > dim(A), by induction, we can assume that ℓ(I) has a monic
polynomial g inXn. So, there is an f in I such that f = gXr

1+gr−1X
r−1
1 +· · ·+g0

where gr−1, . . . , g0 are in A′. Now Theorem 6.1.5 follows easily.

The following definition will be convenient for the future discussions.

Definition 6.1.3 Let R = A[X,X−1] be a Laurent polynomial ring over a
commutative ringA. A Laurent polynomial f is called a doubly monic polynomial
if both the coefficients of the highest and lowest degree terms of f are units in
A.

6.2 Complete Intersections in Polynomial Rings

In this section we shall prove many important results about the number of gen-
erators of ideals I in polynomial rings R = k[X1, . . . , Xn] over fields k. Recall
that, up to a change of variables (Theorem 6.1.5), any nonzero ideal I contains
a monic polynomial in Xn, with coefficients in A = k[X1, . . . , Xn−1]. Interest-
ingly, most of the results about ideals I in polynomial rings over fields extend
to ideals I in polynomial rings R = A[X], over commutative noetherian rings A,
that contain monic polynomials. Our first theorem in this section is as follows.

Theorem 6.2.1 ([Ma1]) Let R = A[X] be a polynomial ring over a noetherian
commutative ring A and let I be an ideal of R that contains a monic polynomial.
If µ(I/I2) ≥ dim(R/I) + 2, then µ(I) = µ(I/I2).
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To prove Theorem 6.2.1, we need the following lemma on prime avoidance.

Lemma 6.2.1 Let A be a commutative noetherian ring and let I, J be two
ideals of A such that J ⊆ I. Let n = µ(I/I2) and let f1, f2, . . . , fr be elements
of I with r < n. Assume that

1. (f1, f2, . . . , fr, gr+1, . . . , gn) + I2 = I for some gr+1, . . . , gn in I,

2. whenever a prime ideal ℘ contains (f1, . . . , fr)+J and does not contain I,
the image of ℘ in A/(f1, J) has height at least u, for some fixed integer u.

Then we can find an element fr+1 in I such that

1. (f1, . . . , fr, fr+1, gr+2, . . . , gn) + I2 = I and

2. whenever a prime ideal ℘ contains (f1, . . . , fr, fr+1) + J and I is not con-
tained in ℘, then the image of ℘ in A/(f1, J) has height at least u+ 1.

Proof. Let ℘1, . . . , ℘k be minimal primes over (f1, . . . , fr) + J that does not
contain I. Note that the images of ℘i in A/(f1, J) has height at least u. Assume
that gr+1 is in ℘1 . . . , ℘t and not in ℘t+1, . . . , ℘k. Let λ be in

I2
⋂

℘t+1

⋂

. . .
⋂

℘k\(℘1

⋃

. . .
⋃

℘t).

Now Lemma 6.2.1 follows with fr+1 = gr+1 + λ.

Proof of Theorem 6.2.1. Let J = A
⋂

I. Let n = µ(I/I2) and I =
(g1, . . . , gn) + I2 for some g1, . . . , gn in I. Since I contains a monic polynomial
f , for large enough integers p, f1 = g1+f

p is monic and I = (f1, g2, . . . , gn)+I
2.

Since A/J −→ R/I and A/J −→ R/(J, f1) are integral extensions, we have

dim(R/I) = dim(A/J) = dim(R/(J, f1)).

By repeated application of Lemma 6.2.1, we can find f2, . . . , fn such that I =
(f1, . . . , fn) + I2 and for any prime ideal ℘ in Spec(R), if (f1, . . . , fn) + JR is
contained in ℘ and I is not contained in ℘ then the image of ℘ in R/(J, f1) has
height at least n− 1, which is impossible because n− 1 > dimR/(J, f1). Hence
for any prime ℘ in Spec(R), if (J, f1, f2, . . . , fn) is contained in ℘ then I is also
contained in ℘.

Now let R1 = R[T, T−1] = A[X,T, T−1] be the Laurent polynomial ring in
the variable T over R.

We define an A-automorphism ψ : R1 −→ R1 such that

ψ(X) = X + T + T−1 and ψ(T ) = T.

We shall write I1 = ψ(IR1), I
′ = I1

⋂

R[T ] and J ′ = I ′
⋂

R = I1
⋂

R. Since
ψ(J) = J is contained in J ′, it follows that
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(i) (ψ(f1), . . . , ψ(fn)) + I21 = I1,

(ii) if (ψ(f1), . . . , ψ(fn))R1+J
′R1 is contained in a prime ideal ℘ in Spec(R1),

then I1 is also contained in ℘.

Since f1 is monic in X, we have that ψ(f1) is a doubly monic polynomial in
T over R. Hence there is an integer r1 ≥ 0 such that a1 = T r1ψ(f1) is a monic
polynomial in R[T ] with a1(0) = 1. We can pick integers r2, . . . , rn such that
ai = T riψ(fi) is in TR[T ] for i = 2 to n.

Since TR[T ] + a1R[T ] = R[T ], it follows from (i) and (ii) that

(iii) I ′ = (a1, . . . , an)R[T ] + I ′2 and

(iv) if (a1, . . . , an)R[T ] +J ′R[T ] is contained in a prime ideal ℘ in Spec(R[T ]),
then I ′ is also contained in ℘.

We shall prove that I ′ is generated by n elements.
First we claim that I ′1+J ′ = (a1, . . . , an)R1+J ′ [T ].
To see this let m be a maximal ideal in Spec(R1+J ′ [T ]) that contains the

ideal (a1, . . . , an). Since R1+J ′ −→ R1+J ′ [T ]/(a1) is an integral extension, J ′ is
in the radical of R1+J ′/(a1) and hence by (iv) it follows that I ′1+J ′ is contained
in m. So, by (iii) it follows that (I ′1+J ′)m = (a1, . . . , an)R1+J ′ [T ]m. Therefore
I ′1+J ′ = (a1, a2, . . . , an)R1+J ′ [T ].

So there is an s in J ′ such that I ′1+s = (a1, . . . , an)R1+s[T ]. Let

φ1 : R1+s[T ]
n −→ I ′1+s

be the surjective map defined by φ1(ei) = ai, where e1, . . . , en is the standard
basis of Rn

1+s[T ]. Also let

φ2 : Rs[T ]
n −→ I ′s = Rs[T ]

be the surjective map defined by φ2(e1) = 1 and φi(ei) = 0 for i = 2 to n.
Now letK = kernel(φ1) andK

′ = kernel(φ2). Note thatK
′ is free. Further,

since Ks is projective and (Ks)a1
is free, by Theorem 3.2.2 of Quillen and Suslin,

Ks is free.
Now let “bar” denote “(modulo T )”. Since ā1 = 1 and āi = 0 for i = 2, . . . , n

it follows that (φ1)s = (φ2)1+s. So, we have an isomorphism β0 : K̄s −→ K̄ ′
1+s

such that the following diagram of exact sequences

0 −→ K̄s −→ Rn
s(1+s) −→ Ī ′s(1+s) −→ 0

↓ β0 ‖ ‖

0 −→ K ′
1+s −→ Rn

s(1+s) −→ Ī ′s(1+s) −→ 0

commutes.
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Since Ks and K ′
1+s are extended modules, there is an isomorphism

β : Ks −→ K ′
1+s such that β̄ = β0. Using splittings of (φ1)s and (φ2)1+s which

are equal “(modulo T )”, we can find an isomorphism

θ : Rs(1+s)[T ]
n −→ Rs(1+s)[T ]

n

such that θ̄ = Id and the following diagram of exact sequences

0 −→ Ks −→ Rs(1+s[T ]
n φ1−→ I ′s(1+s) −→ 0

↓ β ↓ θ ‖

0 −→ K ′
1+s −→ Rs(1+s[T ]

n φ2−→ I ′s(1+s) −→ 0

commutes.
Since sR+ (1 + s)R = R, we have the following fiber product diagram :

Q //

φ

$$J

J

J

J

J

J

J

J

J

J

J

��

Rs[T ]
n

��

φ2

&&N

N

N

N

N

N

N

N

N

N

N

N

I ′ //

��

I ′s

��

R1+s[T ]
n F

//

φ1

$$I

I

I

I

I

I

I

I

I

Rs(1+s)[T ]
n

&&M

M

M

M

M

M

M

M

M

M

I ′1+s
// I ′s(1+s) .

Here F : R1+s[T ]
n → Rs(1+s)[T ]

n is the composition map

R1+s[T ]
n → Rs(1+s)[T ]

n θ→ Rs(1+s)[T ]
n.

In this diagram Q is the fiber product of Rs[T ]
n and R1+s[T ]

n via θ. The map
φ : Q −→ I ′ is got by the properties of fiber product. We have φ is surjective
because φ1 and φ2 are surjective.

If θ1 : Qs −→ Rs[T ]
n and θ2 : Q1+s −→ R1+s[T ]

n are the natural isomor-
phisms, then (θ1)1+so(θ

−1
2 )s = θ ≡ Id (modulo T ). By Lemma 4.3.3, it follows

that Q ≈ R[T ]n is free. Hence I ′ is generated by n elements.
Therefore, ψ(IR[T, T−1]) = I1 = I ′T is also generated by n elements and

hence so is IR[T, T−1]. Now by substituting T = 1, it follows that I is generated
by n elements. So, the proof of Theorem 6.2.1 is complete.

Remark. Under the hypothesis of Theorem 6.2.1, Mohan Kumar ([MK2])
proved that I is the image of a projective R = A[X]-module of rank µ(I/I2).



6.2. COMPLETE INTERSECTIONS IN POLYNOMIAL RINGS 83

Before we go into various consequences of Theorem 6.2.1, we prove the fol-
lowing extension of Theorem 6.1.4 of Boratynski.

Theorem 6.2.2 (Mandal-Roy) Let R = A[X] be a polynomial ring over a
commutative noetherian ring A and I be an ideal of R that contains a monic
polynomial. Suppose I = (f1, . . . , fn)+I

2 and J = (f1, . . . fn−1)+I
(n−1)!. Then

J is generated by n elements. In particular,I is set theoretically generated by n
elements.

To prove Theorem 6.2.2 we need the following proposition.

Proposition 6.2.1 (Mandal-Roy,[MR]) Let A be a commutative ring and
let (f1, . . . , fn) be a unimodular row with n ≥ 2. Let r1, . . . , rn be nonnegative
integers such that the product r1r2 . . . rn is divisible by (n− 1)!. Then there is
a matrix σ in SLn(A) such that

(i) (fr11 , . . . , frnn ) is the first row of σ and

(ii) σf1 is isotopic to identity.

Proof. For n = 2 the proof is obvious. Assume n ≥ 3 and let B =

Z[X1, . . . , Xn, Y1, . . . , Yn]/(X1Y1 + · · ·+XnYn − 1) = Z[x1, . . . , xn, y1, . . . , yn].

Suppose f1g1+· · ·+fngn = 1 for some g1, . . . , gn in A. There is a homomorphism
ψ : B −→ A that sends xi to fi and yi to gi.

By Suslin’s Theorem 5.3.1, we can find a matrix τ in SLn(B) such that
(xr11 , . . . , x

rn
n ) is the first row of τ . Since

Bx1
≈ Z[X1, X

−1
1 , X2, . . . , Xn, Y2, . . . , Yn],

by Proposition 5.2.2., τX1
is isotopic to identity. Now the proof of Proposition

6.2.1 is completed by taking the image of τ in SLn(A) as σ.

Now we are ready to prove Theorem 6.2.2.

Proof of Theorem 6.2.2. In case n = 1, it is easy to see that I is a projective
ideal. Since I contains a monic polynomial, I is in fact free by Theorem 3.2.2.

Assume n ≥ 2. We can assume that f1 is monic. As in the proof of
Theorem 6.1.4, there is an s in I such that I1+s = (f1, . . . , fn) and hence

J1+s = (f1, . . . , fn−1, f
(n−1)!
n ). Since (f1, . . . , fn) is unimodular in Rn

s(1+s), by

Proposition 6.2.1, there is a θ in SLn(Rs(1+s)) such that θf1 is isotopic to iden-

tity and the first row of θ is (f1, . . . , fn−1, f
(n−1)!
n ). As in Theorem 6.1.4, there
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is a projective R-module Q of rank n that maps onto J , where Q is given by the
fiber product diagram

Q −→ Rn
s

↓ ↓
Rn

1+s −→ Rn
s(1+s)

θ−→ Rn
s(1+s).

We want to prove Q is free. By Theorem 3.2.2, it is enough to prove Qf1 is
free. But Qf1 is given by the fiber product diagram

Qf1 −→ Rn
sf1

↓ ↓
Rn

(1+s)f1
−→ Rn

s(1+s)f1

θf−→ Rn
s(1+s)f1

.

Let θ1 : (Qf1)s −→ (Rn
f1
)s and θ2 : (Qf1)1+s −→ (Rn

f1
)(1+s) be the natural

isomorphisms. Then (θ1)1+s(θ
−1
2 )s = θf1 is isotopic to identity. So, (θ1)1+s is

isotopic to (θ2)s. Hence by Lemma 4.3.2, Qf1 ≈ Rn
f1

is free. Therefore Q is free
by Theorem 3.2.2. So, the proof of Theorem 6.2.2 is complete.

Now we shall deduce some of the well known results about the number of
generators of ideals in polynomial rings over fields, as applications of Theorem
6.2.1 and Theorem 6.2.2.

Theorem 6.2.3 (Mohan Kumar,[MK2]) Suppose R = k[X1, . . . , Xn] is a
polynomial ring over a field k and I is an ideal of R. If µ(I/I2) ≥ dim(R/I)+2
then µ(I) = µ(I/I2).

Proof. It is an immediate consequence of Theorem 6.2.1 and the change of
variables Theorem 6.1.5.

Theorem 6.2.4 (Ferrand-Szpiro, Mohan Kumar) Let R = k[X1, . . . , Xn]
be a polynomial ring over a field k and I be a locally complete intersection ideal
of R with height(I) = n − 1. Then there are elements f1, . . . , fn−1 in I such
that

√
I =

√

(f1, . . . , fn−1). That is, I is set theoretically generated by n − 1
elements.

Proof. If n = 2, then I is a principal ideal because height(I) = 1. So, we
assume that n ≥ 3. By Theorem 6.1.3, there is a locally complete intersection
ideal J such that (1)

√
J =

√
I and (2) J/J2 is free A/J-module of rank n− 1.

Hence by Theorem 6.2.3 µ(J) = µ(J/J2) = n − 1. This completes the proof of
Theorem 6.2.4.
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The same proofs give the following extensions of Theorems 6.2.3 and 6.2.4.

Theorem 6.2.5 ([Ma1]) Suppose R = A[X1, . . . , Xn] is a polynomial ring over
a noetherian commutative ring A and I is an ideal of R with height(I) > dimA.

1. If µ(I/I2) ≥ dim(R/I) + 2 then µ(I) = µ(I/I2).

2. If I is a locally complete intersection ideal of height dimA + (n − 1) ≥ 3
then I is set theoretically generated by dimA+ n− 1 elements.

We remark that Theorems 6.2.3 and 6.2.4 give partial answers, respectively,
to the following two long standing open questions.

Open Problems 6.2.1 Suppose R = k[X1, . . . , Xn] is a polynomial ring over
a field k and I is an ideal of R.

Question 1(Murthy (Mu1])). Is µ(I) = µ(I/I2)?

Question 2. Suppose I has pure height n − 1, then whether or not I is set
theoretically generated by n− 1 elements?

In case when k has positive characteristic, the Question 2 is a theorem of
Cowsik and Nori ([CN]). In the next section, we shall give a proof of this theorem
of Cowsik and Nori.

The following is an extension Theorem 6.2.4.

Theorem 6.2.6 ([Lu],[Ma3]) Suppose R = A[X] is a polynomial ring over a
noetherian commutative ring A and I is a locally complete intersection ideal of R,
with dim(R/I) ≥ 1. If I contains a monic polynomial, then I is set theoretically
generated by d elements where d = dimA.

Proof. We shall give a proof by induction on dim(R/I). Let r = height(I).
Suppose dim(R/I) = 1. If height(I) = r = 1, then it is easy to see that I

is a principal ideal. If r ≥ 2, then by Theorem 6.1.3, there is a locally complete
intersection ideal J of height r such that

√
I =

√
J and µ(J/J2) = r. By

Theorem 6.2.2, J is set theoretically generated by r ≤ d elements. Hence I is
also set theoretically generated by d elements.

Now assume that dim(R/I) > 1. Let ℘1, . . . , ℘k be the associated primes of A
and let Q1, . . . , Qt in Spec(R) be associated to R/I. Write Pi = Qi

⋂

A for i = 1
to t and S = A\{℘1

⋃

. . .
⋃

℘k

⋃

P1

⋃

. . .
⋃

Pt}. Let A′ = S−1A, R′ = S−1R
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and I ′ = S−1I. Since A′ is semilocal and R′/I ′ is integral over A′/I ′
⋂

A′, R′/I ′

is also a semilocal ring. As I ′/I ′2 is projective R′/I ′-module of rank r we have
I ′/I ′2 is also free of rank r. So, µ(I ′/I ′2) = r and by Theorem 6.2.2, I ′ is set
theoretically generated by r elements. So, there is an a in S such that Ia is set
theoretically generated by r ≤ d− 1 elements.

Since a is a nonzero divisor on R/I we have I1 = I+aR is a locally complete
intersection ideal of height r + 1, and also that Ī = I1/aR is a locally complete
intersection ideal of height r in R/aR. Since dimR/I1 < dimR/I, by induction
Ī is set theoretically generated by dim(A/aA) elements. Hence Ī is set theoret-
ically generated by d − 1 elements. It follows from the following Lemma 6.2.2
that I is set theoretically generated by d elements. So, the proof of Theorem
6.2.6 is complete.

Lemma 6.2.2 ([Lu]) Let A be a commutative noetherian ring and let a be a
nonzero divisor of A. Suppose that I is an ideal of A and r ≥ 0 is an integer
such that

1. Ia is set theoretically generated by r elements in Aa and

2. I + aA/aA is set theoretically generated by r elements in A/aA.

Then I is set theoretically generated by r + 1 elements.

Proof. Let f1, . . . , fr, g1, . . . , gr be in I be such that
√

(f1, . . . , fr)Aa =
√
Ia

and the images of g1, . . . , gr in Ī = I + aA/aA generate Ī set theoretically.
Write J = (f1, . . . , fr). We can assume that gi is in J2

a for i = 1 to r. Write
hi = afi + gi. Then Ja = (h1, . . . , hr)Aa + J2

a . By Theorem 6.1.2, there is an
element hr+1 in Ja such that (h1, . . . , hr+1)Aa = Ja. We can also assume that
hr+1 is in J . Now it is easy to see that

√
I =

√

(h1, . . . , hr+1) and the proof of
Lemma 6.2.2 is complete.

Corollary 6.2.1 ([Ma3]) Suppose I is a locally complete intersection ideal in
a noetherian commutative ring A with dimA/I ≥ 1. Then I is set theoretically
generated by dimA elements.

Proof. Write J = IA[X] +XA[X]. It follows from Theorem 6.2.6 that J is
set theoretically generated by dimA elements. By substituting X = 0, we see
that I is set theoretically generated by dimA elements.

Remark. In ([Fa2]), Forster asked if there is a smooth affine algebra A over
a field k with dim(A) > 1 and a locally complete intersection ideal I of A of
height one , such that I needs at least dimA + 1 set theoretic generators. We
see here (Corollary 6.2.1) that this will not be possible.
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6.3 The Theorem of Cowsik-Nori on Curves

In this section we give a proof of the theorem of Cowsik-Nori that settles Question
2 of the Open Problems 6.2.1 for fields of positive characteristic.

Theorem 6.3.1 (Cowsik-Nori) Suppose k is a field of positive characteristic
p. Let I be an ideal of pure height n−1 in the polynomial ring R = k[X1, . . . , Xn].
Then I is set theoretically generated by n− 1 elements.

Proof. The proof we give here is due to Moh ([Mo], unpublished). Let K =
k1/∞. Let R′ = K[X1, . . . , Xn] and I

′ = IR′. If I ′ is set theoretically generated

by f1, . . . , fn−1 then for some large enough N , we have fp
N

1 , . . . , fp
N

n−1 are in I
and generate I set theoretically. So, we can assume that k is a perfect field. We
can also assume that I is a reduced ideal.

By Theorem 6.3.2 below, after a change of variables, we can assume that

k[X1, X2]/I ∩ k[X1, X2] → R/I

is an integral and birational extension.
Now write A0 = k[X1, X2]/I ∩ k[X1, X2] and A = k[X1, . . . , Xn]/I and let

C = {t in A0 : tA ⊆ A0} be the conductor of this extension.
We have S−1A0 = S−1A where S is the set of all nonzero divisors of A0.

So, C has height one. Hence A/C is Artinian and dimkA is finite. Let xi be
the image of Xi in A/C and let Vir be the k-linear subspace of A/C generated

by {xp
j

i : j = r, r + 1, . . .}. Note that for a fixed i = 3 to n we have Vir is a
decreasing sequence of subspaces of a finite dimensional space. Hence there is
an integer N such that Vir = ViN for i = 3, . . . , n and r = N,N + 1, . . ..

As xNi is in Vi(N+1), there are λi1, λi2, . . . , λit in k and c3, . . . , cn in k[X1, X2]

such that fi = XpN

i + λi1X
pN+1

i + · · ·+ λitX
pN+t

i + ci is in I for i = 3, . . . , n.

For i = 3, . . . , n write Yi = XpN

i and also write R0 = k[X1, X2, Y3, . . . , Yn]

and I0 = I ∩ R0. Since
√
I =

√
I0R, we shall prove that I0 is set theoretically

generated by n− 1 elements in R0.
Since the matrix (∂fi/∂Yj)i,j=3,...n is identity, R1 = R0/(f3, . . . , fn) is a

regular ring of dimension 2. Hence I0/(f3, . . . , fn) is an invertible ideal and
hence I0 is a locally complete intersection ideal of height n − 1. Therefore, by
Theorem 6.2.4, I0 is set theoretically generated by n− 1 elements. So, the proof
of Theorem 6.3.1 is complete.

Now we state and prove Theorem 6.3.2 on birational projection to plane that
was used in the proof of Theorem 6.3.1. I learned the proof of this Theorem
6.3.2 from some notes of Balwant Singh([Si]).
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Theorem 6.3.2 Let A = k[X1, . . . , Xn] be a polynomial ring over a perfect field
k and I be a reduced ideal of pure height n−1. Then, after a change of variables
φ : A→ A, we have k[X1, X2]/I ∩k[X1, X2] → A/I is an integral and birational
extension.

We need the following lemmas to prove the theorem.

Lemma 6.3.1 Let k[X,Y ] be a polynomial ring in two variables over a perfect
field k with characteristic (k) = p and f be an irreducible polynomial. Then
either ∂f/∂X 6= 0 or ∂f/∂Y 6= 0.

Proof. We assume that p ≥ 1 . If ∂f/∂X = ∂f/∂Y = 0 then f = gp for some
g in k[X,Y ]. But since f is irreducible the proof of Lemma 6.3.1 is complete.

Lemma 6.3.2 Let k[X,Y ] and f be as in Lemma 6.3.1. Then for large enough
m if p does not divide m then f(X + Y m, Y ) is monic in Y and

∂f(X + Y m, Y )/∂Y 6= 0.

Proof. Write F = Fm = f(X + Y m, Y ). By Theorem 6.1.5, F is monic in Y
for large enough m. We also have

∂F

∂Y
= mY m−1 ∂f

∂X
(X + Y m, Y ) +

∂f

∂Y
(X + Y m, Y ).

Now if ∂f
∂Y 6= 0 then there is an integer m0 such that ∂f/∂Y is not in (Y m0).

Hence for any nonnegative integer m, we have that ∂f
∂Y (X + Y m, Y ) is not in

(Y m0). In this case for m ≥ m0 + 1, it follows that ∂F/∂Y 6= 0. If ∂f/∂Y = 0,
then by Lemma 6.3.1 we have ∂f/∂X 6= 0 and hence

∂F/∂Y = mY m−1 ∂f

∂X
(X + Y m, Y ) 6= 0

if p does not divide m. This completes the proof of Lemma 6.3.2.

The following lemma is easy to prove and we omit the proof.

Lemma 6.3.3 Let k → K be a finite field extension and K = k(y, z) where y
is separable over k. Then L = k(ay + z) for all but finitely many a in k.
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Lemma 6.3.4 Let A = k[Y,Z] be a polynomial ring over a field k and ℘1, ℘2

be two distinct maximal ideals in A. Then ℘1 ∩ k[aY +Z] 6= ℘2 ∩ k[aY +Z] for
all but finitely many a in k.

Proof. Let L be the algebraic closer of k and for i = 1, 2 let Li = A/℘i be the
quotient fields . Since k → Li is finite, we can fix two k-embeddings Li → L.
For i = 1, 2 let yi, zi denote the images of Y,Z, respectively, in Li. Let E be the
set of all k-embeddings σ : L1 → L. Then E is finite. Write

S = {a in k : a(σ(y1)− y2) = z2 − σ(z1) for some σ in E}.

If σ(y1) = y2 and σ(z1) = z2 for some σ in E, then it follows that ℘1 = ℘2,
which is impossible. So , we have that S is a finite set.

Let a be in k and not in S. We will see that ℘1∩k[aY +Z] 6= ℘2∩k[aY +Z].
For i = 1, 2 since ℘i is the kernel of the map k[Y,Z] → Li, note that for σ in
E, (σ(y1), σ(z1)) 6= (y2, z2). Hence it follows that σ(ay1 + z1) 6= ay2 + z2 for
all σ in E. So, ay1 + z1 and ay2 + z2 are not conjugates and therefore they
have distinct minimal monic polynomials over k. For i = 1, 2 let fi(T ) be the
minimal monic polynomial of ayi + zi. It is easy to see that fi(aY + Z) are
distinct irreducible elements in k[aY + Z] and are in ℘i ∩ k[aY + Z]. Hence
℘1 ∩ k[aY + Z] 6= ℘2 ∩ k[aY + Z]. This completes the proof of Lemma 6.3.4.

Now we are ready to prove the projection Theorem 6.3.2.

Proof of Theorem 6.3.2. By Theorem 6.1.5, after a change of variables,

k → k[X1] → k[X1, X2]/I2 → · · · → k[X1, . . . , Xn]/In

are all integral extensions, where Ir = I ∩ k[X1, . . . , Xr]. Assume for the mo-
ment that k[X1, X2]/I2 → k[X1, X2, X3]/I3 is integral and birational. Hence
k[X1, X2, X4, . . . , Xn]/J → k[X1, . . . , Xn]/In is integral and birational, where
J = I ∩ k[X1, X2, X4, . . . , Xn]. Hence, by induction, again after a change of
variables, k[X1, X2]/I ∩ k[X1, X2] → k[X1, . . . , Xn]/I is integral and birational.
So, it is enough to prove the theorem for n = 3.

We write X1 = X,X2 = Y,X3 = Z. Also write I = ℘1 ∩ . . . ∩ ℘r ,where
℘1, . . . , ℘r are in Spec(k[X,Y, Z]). Again by Theorem 6.1.5, we can assume that

k[X,Y ]/I ∩ k[X,Y ] → k[X,Y, Z]/I

is an integral extension.
For i = 1 to r, we have ℘i ∩ k[X,Y ] = fik[X,Y ] for some irreducible polyno-

mial fi in k[X,Y ]. By Lemma 6.3.2, for large enough m that is not divisible by
p, gi = fi(X+Y m, Y ) is monic and ∂gi/∂Y 6= 0 for i = 1, . . . , r. Hence after the
change of variables X → X + Y m, Y → Y , and replacing fi by fi(X + Y m, Y )
we can assume that ∂fi/∂Y 6= 0 .
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For i = 1, . . . , r let Ki be the fraction field of k[X,Y, Z]/℘i and xi, yi, zi
be the images of X,Y, Z in Ki. Let k(X) be the field of fractions of k[X]. It
follows that k(X) → Ki is integral and yi is separable over k(X). Since k(X)
is infinite, by Lemma 6.3.3 and Lemma 6.3.4 there is an a in k(X) such that
Ki = k(X)(ayi + z) for all i = 1, . . . , r and k(X)[Y,Z] ∩ ℘i are distinct. Hence
it follows that k(X)[Y,Z]/I is generated by aY + Z over k(X).

Write a = c/d with c, d in k[X] and with βc − λd = 1 for some λ and β in
k[X]. Then k(X)[Y,Z]/I is generated by cY + dZ over k(X).

Now

α =





1 0 0
0 c d
0 λ β





is an invertible matrix. After the change of variables that sends (X,Y, Z)t to
α−1(X,Y, Z)t, we have that k(X)[Y,Z]/I is generated by Y over k(X). Hence

k[X,Y ]/I ∩ k[X,Y ] → k[X,Y, Z]/I

is an integral and birational extension. So, the proof of Theorem 6.3.2 is com-
plete.



Chapter 7

The Techniques of Lindel

In this Chapter we prove some of the theorems about projective modules over
polynomial rings in several variables. First, in section 7.1, we deal with the Bass-
Quillen Conjecture. Later we prove the analogues of the theorems of Plumstead
on the existence of unimodular elements (Theorem 4.3.2) and the Cancellation
property (Theorem 4.3.1) for projective modules over polynomial rings in several
variables. Techniques used in this chapter are almost entirely due to Lindel.

7.1 The Bass-Quillen Conjecture

Recall that for a field k, a ring A containing k is called essentially of finite type
over k if A is the localization of an affine algebra over k.

In this section we prove Lindel’s theorem that deals with the following con-
jecture.

Conjecture 7.1.1 (Bass-Quillen) Let R = A[T1, . . . , Tn] be a polynomial
ring over a regular ring A. Suppose P is a finitely generated projective R-
module. Whether P is extended from A or not?

Lindel affirmatively settled this conjecture when A is essentially of finite type
over a field. Before we state Lindel’s theorem, we do some preparatory work.

Definition 7.1.1 Let R1 be a subring of a commutative ring R and h be an
element of R1. We say that R1 → R is an analytic isomorphism along h, if the
induced map R1/hR1 → R/hR is an isomorphism or equivalently if R = R1+hR
and hR1 = hR ∩R1.

It follows that if R1 → R is an analytic isomorphism along h then it is also
so along hr.

91
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The following is a theorem of Nashier that puts some of the main arguments
of Lindel in a very nice form.

Theorem 7.1.1 ([N1]) Let (A,m) be a regular local ring, essentially of finite
type over a perfect field k of dimension d. Let a be a nonzero element of m2.
Then there exists a regular local subring S of A such that

1. S is the localization of a polynomial ring C = k[X1, . . . , Xd] at a maximal
ideal M = (f(X1), X2, . . . , Xd) , where f(X1) is an irreducible polynomial
in X1;

2. there is an element h in S∩aA such that S → A is an analytic isomorphism
along h.

Proof. Let m = (Z,X2, . . . , Xd). By usual prime avoidance arguments, we can
assume that (a,X2, . . . , Xd) is a regular system of parameters. To see this let
us assume that (a,X2, . . . , Xr) is a regular sequence and let ℘1, . . . , ℘i be the
mimimal prime ideals over (a,X2, . . . , Xr). Assume that r ≤ d − 1 and that
Xr+1 is in ℘1, . . . , ℘j and not in ℘j+1, . . . , ℘i. Pick λ in m2∩℘j+1∩ . . .∩℘i that
is not in ℘1 ∪ . . . ∪ ℘j . Now replacing Xr+1 by Xr+1 + λ we can assume that
m = (Z,X2, . . . , Xd) and (a,X2, . . . , Xr+1) is a regular sequence.

Now since a,X2, . . . , Xd is a regular sequence, k[a,X2, . . . , Xd] is a polyno-
mial ring. Let B be the integral closure of k[a,X2, . . . , Xd] in A andm1 = m∩B.
As m1∩k[a,X2, . . . , Xd] = (a,X2, . . . , Xd), it follows that m1 is a maximal ideal
in B.

Since the fields of fractions Q(k[a,X2, . . . , Xd]) and Q(A) have same tran-
scendence degree over k, the extension Q(k[a,X2, . . . , Xd]) → Q(A) is algebraic.
As B is integral over k[a,X2, . . . , Xd], it follows that Q(B) = Q(A). Also since
Q(k[a,X2, . . . , Xd]) → Q(A) is finite, B is a finite k[a,X2, . . . , Xd]-module. As
the completion of A is an integral domain and contains the completion of Bm1

,
we have Bm1

is analytically irreducible. Also note that Bm1
is normal and that

A/m1A is finite B/m1B-module because m1A is m-primary and A/m is finite
over k. Hence by Zariski’ main theorem, we have A = Bm1

.
As k is perfect, L = B/m1 = k(ᾱ) for some α in B, where bar “-” means

“(modulo m1)”. Let f be the minimal monic polynomial of ᾱ over k. Then f(α)
is in m1 and f ′(α) is not in m1. For y in m1, we have f(α+ y) ≡ f(α) + f ′(α)y
(modulo m2

1). We claim that for a suitable choice of y in m1 we have

m1 = (f(y + α), X2, . . . , Xd) +m2
1.

Since A = Bm1
, we have m1/m

2
1 = LZ̄ + LX̄2 + · · · + LX̄d. Let f(ᾱ) = c1Z̄ +

c2X̄2 + · · · + cdX̄d where c1, . . . , cd are in L. If c1 6= 0 then take y = 0 and if
c1 = 0 then take y = Z. The claim is established with this choice of y. So, by
replacing α by y + α we can assume that m1 = (f(α), X2, . . . , Xd) +m2

1.
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Letm1,m2, . . . ,mr be the maximal ideals in B over (a,X2, . . . , Xd). Pick X1

in B such that X1 ≡ α (modulo m2
1) and X1 ≡ 0 (modulo mi) for i = 2, . . . , r.

We claim that m1 = (a, f(X1), X2, . . . , Xd). To see this note that f(X1) ≡ f(α)
(modulo m2

1), and hence m1 = (f(X1), X2, . . . , Xd) + m2
1. Also note that the

only maximal ideal that contains (a, f(X1), X2, . . . , Xd) is m1. So, the claim is
established.

Since X1 is integral over k[X1, . . . , Xd], by replacing X1 by X1 + aj for some
suitable j, we can assume that a is integral over k[X1, . . . , Xd].

Write C = k[X1, . . . , Xd], M = (f(X1), X2, . . . , Xd) and S = CM . We shall
prove that S → A is an analytic isomorphism along some h in aS.

Note that m ∩ C =M and that (M,a)A = m. We also have that

L ≈ C[a]/(M,a) ≈ B/m1.

Since B is a finite C[a]-module, by Nakayama’s lemma we have A = Bm1
=

C[a](M,a) .
So, we have A = S + aA and hence S/S ∩ aA = A/aA. Let F = Tn +

λn−1T
n−1+· · ·+λ0 be the minimal monic polynomial of a over C. We claim that

λ1 is not in M . To see this first note that the maximal ideal m of A = C[a](M,a)

is generated by M . As a is in m2 there are µi and ηi in C for i = 0, 1, . . . , r such
that

(η0 + η1a+ · · ·+ ηra
r)a = (µ0 + µ1a+ · · ·+ µra

r)

with µ0, µ1 in M and η0 not in M . Hence there is a polynomial H(T ) = α0 +
α1T + · · · + αrT

r in C[T ] such that H(a) = 0 and α1 is not in M . Now since
F (T ) divides H(T ), it follows that λ1 is not in M .

Now write h = λ0 and claim that S → A is an analytic isomorphism along h.
First, since h = λ0 = −a(λ1 + λ2a+ · · ·+ λn−1a

n−2 + an−1) and since the last
factor is a unit in A, we have A = S + aA = S + hA. Also since S[a] is a free
S-module we have A = S[a](M,a) is a flat S-module. Since S is local, S → A is
a faithfully flat extension. Hence we have hA∩S = hS. Therefore, S → A is an
analytic isomorphism along h. This completes the proof of Theorem 7.1.1.

Now we are ready to state and prove Lindel’s theorem.

Theorem 7.1.2 (Lindel,[L1]) Let A be a regular ring of dimension d , essen-
tially of finite type over a field k and let R = A[T1, . . . , Tn] be a polynomial ring.
Then any finitely generated projective R-module P is extended from A.

Proof. First note that by Quillen’s Theorem 3.1.1, we can assume that A is
local. So, we write A = C℘ where C is an affine algebra over k and ℘ is a prime
ideal.

Now we want to reduce the problem to the case when k is perfect. Let k0
be the primefield of k. Write C = k[X1, . . . , Xm]/(f1, . . . , fr) where X1, . . . , Xm

are variables and f1, . . . , fr are in k[X1, . . . , Xm]. Since P is projective, it is the
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image of an idempotent endomorphism α of a free module. Let k′ be the subfield
of k generated by coefficients of f1, . . . , fr and that of the entries of α. Write
C ′ = k′[X1, . . . , Xm]/(f1, . . . , fr), ℘

′ = ℘∩C ′, A′ = C ′
℘′ and R′ = A′[T1, . . . , Tn].

Since α is defined over R′, it follows that P is an extension of a finitely generated
R′-module P ′. Also note that A = A′ ⊗k′ k is a faithfully flat extension of A′.
So, A′ is also regular. Since k′ is a finite extension of k0, A

′ is essentially of finite
type over k0. Hence by replacing A by A′, we can assume that k is perfect.

Now we prove the theorem by induction on dim A = d. If d ≤ 1, then P is
free by Quillen-Suslin Theorem 3.2.4. Now we assume that d ≥ 2. By Theorem
7.1.1, we can find a subring S of A such that

1. S = k[X1, . . . , Xd]M where X1, . . . , Xd are variables and
M = (f(X1), X2, . . . , Xd) is a maximal ideal with f(X1) in k[X1] ,

2. there is a nonzero element h in MS such that S → A is an analytic
isomorphism along h.

Note that
S −→ A
↓ ↓
Sh −→ Ah

is a fiber product diagram.
Since dim Ah < dim A, by induction Ph is extended from Ah. Hence

Ph ≈ P0 ⊗Ah[T1 . . . , Tn] for some projective Ah-module P0. Since

P0 ≈ Ph/(T1, . . . , Tn)Ph ≈ (P/(T1, . . . , Tn)P )h

is free, Ph is also free. Let rank(P ) = r and F be the free Sh-module of rank
r. By patching P and F via an isomorphism F ⊗ Ah ≈ Ph we get a projective
S-module P ′ such that P ′ ⊗ R ≈ P . So, by replacing A by S, we assume that
A = k[X1, . . . , Xd]M where M = (f(X1), X2, . . . , Xd) is a maximal ideal in the
polynomial ring k[X1, . . . , Xd].

Write A0 = k[X1, . . . , Xd−1](f(X1),X2,...,Xd−1). Then A0[Xd] → A is an ana-
lytic isomorphism along Xd. By the same argument as above,

P ≈ P ′ ⊗A[T1, . . . , Tn]

for some projective A0[Xd, T1, . . . , Tn]-module P ′. But since dim A0 ≤ d − 1,
by induction, P ′ is free and hence P is also free. This completes the proof of
Theorem 7.1.2.

7.2 The Unimodular Element Theorems

In this section and the next one, one of our main emphasis is on some of the
techniques developed by Lindel.

In this section we prove some theorems about the existence of unimodular
elements for projective modules over polynomial rings. The main existence theo-
rem in this section is due to Bhatwadekar and Roy. First we have to set up some
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preliminaries and notations to start our discussion on Lindel’s techniques. In
the core of Lindel’s methods is the set up achieved in the following Proposition
7.2.1.

Proposition 7.2.1 Let A be a noetherian commutative ring andM be a finitely
generated A-module. Let S be a multiplicative subset of A such that S−1M is
AS-free of rank r. Then there are elements s in S and e1, . . . , er in M and
g1, . . . , gr in M∗ = Hom(M,A) such that

1. ann (s) = ann (s2),

2. with F = Ae1 + · · ·+Aer and G = Ag1 + · · ·+Agr we have sM ⊆ F and
sM∗ ⊆M∗,

3. the matrix (gi(ej) : i, j = 1, . . . , r) = diagonal(s, s, . . . , s).

Further, if S consists only of nonzero divisors , then F and G are free.

Proof. There is a t in S such that Mt is free. Since ann (tk) is an increasing
sequence, by replacing t by a power of t we can assume that ann (t) = ann (t2).
We can find e1, . . . , er in M such that their images form a basis of Mt. Write
F = Ae1 + · · · + Aer. Since M is finitely generated we have tlM ⊆ F for
some nonnegative integer l. Let φ1, . . . , φr in Hom(Mt, At) be the dual basis of
e1, . . . , er and hence the matrix (φi(ej) : i, j = 1, . . . , r) = diagonal (1, 1, . . . , 1).

There are g1, . . . , gr in M∗ and a positive integer l′ ≥ l such that φi = gi/t
l′ for

i = 1, . . . , r. We can modify gi by multiplying it by a suitable power of t and
assume that (gi(ej) : i, j = 1, . . . , r) = diagonal (tl

′

, . . . , tl
′

) and also that for all

g in M∗ , tl
′

g = g(e1)g1+ · · ·+g(er)gr. Now taking s = tl
′

the assertion follows.
This completes the proof of Proposition 7.2.1.

Notations 7.2.1 Let A be a commutative ring.

1) For an A-module M and an element m in M recall that

O(m) = O(m,M) = {g(m) : g is in M∗}.

Also recall that Um(M) denotes the set of all unimodular elements of M .

2) For m in M and g in M∗ we shall also use the notation that

< g,m >=< m, g >= g(m).

3) Let A = ⊕k≥0Ak be a graded ring and let b be an element of A0. Then the
substitution map hb : A→ A is defined by hb(x) = bkx for x in Ak.

Note that for r in A0, we have hb(r) = r and for x in A we have hb(x)− x
is in (1− b)A+ where A+ = A1 ⊕A2 ⊕ . . ..
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The lemma below is also very central in the methods of Lindel.

Lemma 7.2.1 ([L2]) Let A = ⊕k≥0Ak be a graded ring and M be a finitely
generated A-module. Let S be a multiplicative subset of A0 such that S−1M
is free of rank r. Let s in S, e1, . . . , er in M , g1, . . . , gr in M∗, F, G be as in
Proposition 7.2.1. Suppose h = h1+λs2 : A → A is a substitution map for some
λ in A0. Then there are two additive maps χ : M → M and χ∗ : M∗ → M∗

such that for a in A, p in M and g in M∗ we have

1. χ(p)− p is in sA+F and χ∗(g)− g is in sA+G,

2. χ(ap) = h(a)χ(p), χ∗(ag) = h(a)χ∗(g),

3. < χ∗(g), χ(p) >= h(g(p)) and

4. Ah(O(p)) ⊆ O(χ(p)).

Proof. For simplicity, first assume that S consists only of nonzero divisors of
A. Let sp = a1e1 + · · ·+ arer for some a1, . . . , ar in A. For i = 1, . . . , r we have
h(ai) = ai + s2ci for some ci in A+. Let q = sc1e1 + · · ·+ screr and define

χ(p) = p+ q.

Clearly, χ(p) − p = q is in sA+F . For a in A, sap = aa1e1 + · · · + aarer and
h(a) = a+ s2c for some c in A+. So,

h(aia) = h(ai)h(a) = aia+ s2(aic+ cia+ s2cic) and hence

χ(ap) = ap+
∑

s(aic+ cia+ s2cic)ei.

Also h(a)χ(p) = (a+ s2c)(p+
∑

sciei). Hence h(a)χ(p) = χ(ap).
Similarly, for g in M∗, let sg = b1g1 + · · · + brgr and h(bi) = bi + s2di for

some b1, . . . , br in A and d1, . . . , dr in A+. Let f = sd1g1+ · · ·+sdrgr and define

χ∗(g) = g + f.

We shall check that < χ∗(g), χ(p) >= h(< g, p >). It is easy to see that

sχ(p) = h(a1)e1 + · · ·+ h(ar)er and sχ∗(g) = h(b1)g1 + · · ·+ h(br)gr.

So,

s2 < χ∗(g), χ(p) >=< sχ∗(g), sχ(p) >= s(h(a1)h(b1) + · · ·+ h(ar)h(br))

= h(s(a1b1 + · · ·+ arbr)) = h(< sg, sp >) = s2h(< g, p >).

Hence < χ∗(g), χ(p) >= h(< g, p >) and the assertion is established in this case.
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In the general case, we define χ and χ∗ exactly the same way. Using the fact
that ann (s) = ann (s2) we check the rest to finish the proof. This completes
the proof of Lemma 7.2.1.

Now we are ready to prove the theorem of Bhatwadekar and Roy on the
existence of unimodular elements.

Theorem 7.2.1 (Bhatwadekar-Roy,[BR]) Suppose R = A[T1, . . . , Tn] is a
polynomial ring over a noetherian commutative ring A with dim(A) = d finite.
Let P be a finitely generated projective R-module with rank(P℘) > d for all ℘ in
Spec(R). Then

1. P has a unimodular element and

2. if Pt is free for some t in A then the map Um(P ) → Um(P/tTnP ) is
surjective.

Proof. First we prove (2). We also write T = Tn. We can assume that
rank(P ) = r > d is constant. Let x be an element in Um(P/tTP ) and let
p be an element in P whose image is x. As (p, tT ) is unimodular in P ⊕ R,
by Theorem 4.1.1, there is a p′ in P , such that p + tTp′ is basic at all prime
ideals of height less than r. Hence by replacing p by p + tTp′ we can assume
that height(O(p)) ≥ r > d. Hence, after a change of variables (Theorem 6.1.5),
we can also assume that O(p) contains a monic polynomial in T . As image of
p = x is unimodular, it follows that O(p) contains a polynomial f of the form
f = 1 + tTf1 where f1 is in R.

As Pt is free, we can find s = tk, e1, . . . , er in P and g1, . . . , gr in P ∗ and
F, G as in Proposition 7.2.1.

We write R = A′[T ] = A′ ⊕ A′T ⊕ A′T 2 ⊕ . . ., where A′ = A[T1, . . . , Tn−1]
and look at it as a graded ring. As A′/O(p) ∩ A′ → R/O(p) is integral and
O(p)+ s2R = R, we have O(p)∩A′ + s2A′ = A′. So, b = 1+ s2b′ is in O(p)∩A′

for some b′ in A′. Let h = hb : R → R be the substitution map that sends T to
bT .

By Lemma 7.2.1, there are maps χ : P → P, χ∗ : P ∗ → P ∗ such that for p in
P and g in P ∗, we have χ(p)−p is in sTF ⊆ sTP and < χ∗(g), χ(p) >= h(g(p)).

Write p′ = χ(p). Then the image of p′ is x in P/tTP and h(f) = 1+tbTf1(bT )
and h(b) = b are in O(p′). Hence O(p′) = R and p′ is a unimodular element.
This completes the proof of the second part of Theorem 7.2.1.

To prove (1) of Theorem 7.2.1, we assume that A is reduced and P has
constant rank r. We use induction on dimR = d + n. If d + n = 0 then R is a
product of fields and the assertion is obvious. Now assume d+n ≥ 1. If dim A ≥
1 then let S be the set of all nonzero divisors of A. Since dim(S−1R) < d + n
and since dim (S−1A) = 0, by repeated application of the induction hypothesis
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we see that S−1P is free of rank r. So, we can find a t in S so that Pt is free.
Again, as R/tTR ≈ (A[T ]/tTA[T ])[T1, . . . , Tn−1], by induction Um(P/tTP ) is
nonempty. Now from (2) it follows that P has a unimodular element.

Now we are left with the case dimA = 0. Since we can assume that A is
reduced and Spec(A) is connected, we can assume that A is a field. If n = 1
then R = A[T ] is a principal ideal domain and hence P is free. So, we assume
that n ≥ 2. Write R = A0[T2, . . . , Tn] where A0 = A[T1]. If the rank r = 1
then P is isomorphic to an invertible ideal and hence free because R is a unique
factorization domain. Now, we assume that r ≥ 2. In this case, we have 1 ≤
dim A0 < r and the assertion follows from the previous case . This completes
the proof of Theorem 7.2.1.

Remark. The proof of Theorem 7.2.1 that we gave here is due to Lindel. One
of the main features of this proof is that we never used the theorems of Quillen
and Suslin (e. g. Theorems 3.1.1, 3.2.3) that we have discussed before. So, this
also produces an independent proof of the Quillen-Suslin Theorem 3.2.3.

The following is an easy lemma.

Lemma 7.2.2 Let R be a commutative ring and I, J be two ideals. Suppose
P is a finitely generated projective R-module. Then the map

Um(P/IJP ) → Um(P/IP )

is surjective if the map

Um(P/JP ) → Um(P/(I + J)P ))

is surjective.

Proof. The proof follows by chasing the following fiber product diagram:

P/(I ∩ J)P −→ P/IP
↓ ↓
P/JP −→ P/(I + J)P.

This completes the proof of Lemma 7.2.2.

Theorem 7.2.2 (Lindel,[L2]) Let R = A[X1, . . . , Xn] be a polynomial ring
over a noetherian commutative ring A with dim(A) = d. Suppose P is a finitely
generated projective R-module and I is an ideal in A. If rank(P℘) > d for all ℘
in Spec(R) then

1. the map Um(P ) → Um(P/IP ) is surjective and
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2. the map Um(P ) → Um(P/XnP ) is surjective.

Proof. We assume that A has no nontrivial idempotent element and hence P
has constant a rank. We use induction on dim(R) = d+ n. In the case n = 0 1)
follows from Theorem 4.1.1. Also if d = 0 then I is a nilpotent ideal and P is
free by Theorem 3.2.3. So, both the assertions follow in this case.

Now assume that d ≥ 1 and n ≥ 1. Pick a nonzero divisor s in A such that
Ps is free. By Theorem 7.2.1,

Um(P ) → Um(P/sXnP )

is surjective. Also by induction hypothesis

Um(P/sP ) → Um(P/(s,Xn)P )

is surjective. By Lemma 7.2.2,

Um(P/sXnP ) → Um(P/XnP )

is surjective. Therefore Um(P ) → Um(P/XnP ) is surjective and 2) is estab-
lished.

Now we prove 1). Note that for an element p in P , if the image of p in P/IP
is unimodular then there is an element a in I such that 1+ a is in O(p). So, the
image of p in P/aP is also unimodular. Hence we can assume that I = (a) is
generated by one element a in A. Also let s be as above. Again by induction

Um(P/sP ) → Um(P/((a, s)P ) and Um(P/XnP ) → Um(P/(as,Xn)P )

are surjective. It follows, by Lemma 7.2.2, that

Um(P/asP ) → Um(P/aP ) and Um(P/asXnP ) → Um(P/asP )

are surjective. Also by Theorem 7.2.1, Um(P ) → Um(P/asXnP ) is surjective
and hence the proof of Theorem 7.2.2 is complete.

7.3 The Action of Transvections

In this section we shall prove the theorem of Lindel about the action of the group
of transvections on unimodular elements of projective modules over polynomial
rings and derive two important theorems([Ra], [BM]). First we give the definition
and some elementary properties of transvections.

Definition 7.3.1 Let M be a finitely generated module over a commutative
ring R and M∗ = Hom(M,R).
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1) For an element p in M and g in M∗ by pg we mean the endomorphism of M
that sends m to g(m)p. If we consider p as a map from R to M then this
notation is consistent with that of the composition of maps. Note that if
g(p) = 0 then (pg)2 = 0 and hence IdM + pg (henceforth we write 1 + pg)
is an automorphism of M .

2) An automorphism of M of the form 1 + pg where p is in M and g is in M∗

with g(p) = 0 will be called a transvection of M if either p is in Um(M)
or if g is in Um(M∗).

3) As usual Aut(M) will denote the group of all R-linear automorphisms of
M . For an ideal I of R, E l(M, I) will denote the subgroup of Aut(M)
generated by transvections of the type 1 + pg such that pg ≡ 0 (modulo
I). If M is projective then, as p or g is unimodular, pg ≡ 0 (modulo I) if
and only if p is in IM or g is in IM∗. We write E l(M) for E l(M,R). This
subgroup E l(M) will be called the group of transvections of M .

4) For an ideal I, the group of all r× r-matrices with determinant one that are
identity (modulo I) will be denoted by SLr(R, I).

5) For R-modules M and N an element of M ⊕N will be denoted by a ”row”
(m,n). For this reason, for an r × r- matrix α and (f1, . . . , fr) in Rr we
may write α(f1, . . . , fr) for what would be denoted in the matrix notation,
by α(f1 . . . , fr)

t.

The following are some of the basic facts about the group of transvections.

Lemma 7.3.1 Let R be a noetherian commutative ring and I be an ideal of R.

1) Suppose M is a finitely generated R-module. Then E l(M, I) is a normal
subgroup of Aut(M).

2) The subgroup Er(R) (see Definition 5.1.1) of GLr(R) of the elementary
matrices is contained in E l(Rr). If projective R-modules are free then
Er(R) = E l(Rr).

3) ([BR]) Let P be a finitely generated projective R-module such that the
map Um(P ) → Um(P/IP ) is surjective. Then E l(P ) → E l(P/IP ) is
surjective. Further, if R = A[X] is a polynomial ring and I is an ideal of
A then E l(P,X) → E l(P/IP,X) is surjective.

Proof. The proof of 1) follows from the identity that

u(1 + pg)u−1 = 1 + u(p)(gu−1).
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Let E(i,j)(λ), for λ in R, be the r × r-matrix whose only nonzero entry is at
the (i, j)-th place and is equal to λ. Then the generator e(i,j) = 1 + E(i,j)(λ)
of Er(R) is the map 1 + λeipj where e1, . . . , er is the standard basis of Rr and
pj is the j-th projection Rr → R. Hence Er(R) ⊆ E l(Rr). Now to see the last
part of 2) observe that the definition of Er(R) is independent of the basis and a
generator of E l(Rr) is in Er(R) with respect to some suitable basis.

Now we prove 3). We shall only prove the last part of 3). Since the map
Um(P ) → Um(P/IP ) is surjective we shall derive that the map

Um(P ∗) → Um(P ∗/IP ∗)

is also surjective. To see this let φ be in Um(P ∗/IP ∗) and let f in P ∗ be a lift of
φ. There is an element x in Um(P/IP ) such that φ(x) = 1. So, by hypothesis,
we can find a y in Um(P ) whose image is x. So, f(y) = 1 + a for some a in I
and g(y) = 1 for some g in P ∗. If ψ = f − ag then ψ(y) = 1. Hence ψ is in
Um(P ∗) and is a lift of φ. So, Um(P ∗) → Um(P ∗/IP ∗) is surjective.

Let 1 + pg be a generator of E l(P/IP,X) for some p in P/IP and g in
(P/IP )∗. Assume p is unimodular. Since pg ≡ 0 (modulo X), we have g = Xg′

for some g′ in (P/IP )∗.
Let q in Um(P ) be a lift of p and f1, f2 in P ∗ be such that f1 lifts of g′ and

f2(q) = 1. As Xg′(p) = 0, we have g′(p) = 0 and hence f1(q) = b is in IR. Write
f = Xf1 − bXf2. Then f is in XP ∗ and f(q) = 0. Also we see that 1 + qf lifts
1 + pg. Similarly, we see that if g is unimodular then 1 + pg lifts in E l(P,X).
This completes the proof of Lemma 7.3.1.

The following is a version of a key lemma in the work of Lindel that extends
the corresponding theorem of Suslin (see Corollary 7.3.1) for unimodular rows
in polynomial rings.

Lemma 7.3.2 Let R = A[X] be a polynomial ring over a noetherian commu-
tative ring A and let M be a finitely generated R-module. Assume that s is in
A and X is a nonzero divisor on M . Assume that e1, . . . , er (resp. g1, . . . , gr)
are elements of M (resp. M∗) such that the matrix

(< gi, ej >: i, j = 1, . . . , r) = diagonal (1, 1, s, . . . , s).

Let p(X) = f1(X)e1 + f2(X)e2 + · · · + fr(X)er be in M for some f1, . . . , fr in
R, such that

1. f1 ≡ 1 (modulo sX),

2. f2 is a monic polynomial,

3. fi(0) = 0 for i = 2, . . . , r and

4. (f1, f2, . . . , fr) = R.
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Then for all h(X) in R, we have p(h(X)) is unimodular. Further, for h, h′

in R with h(0) = h′(0) = 0, whenever h − h′ is in (sX), there is an u in
SL2(R, sX)E l(M,X) such that

u(p(h(X))) = p(h′(X)).

Remark 7.3.1 Before we go into the proof of Lemma 7.3.2 the following clari-
fications are in order.

1. Note that the substitution p(h) in the statement of Lemma 7.3.2 has ob-
vious meaning.

2. Note that in the statement of Lemma 7.3.2, Re1 + Re2 is identified with
R2. Under this identification we have M = R2 ⊕N where

N = {m in M : g1(m) = g2(m) = 0}.

Because of this SL2(R) can be identified as a subgroup of Aut(M).

3. Also note that E l(M,X) is a normal subgroup of Aut(M). Therefore it
follows that SL2(R, sX)E l(M,X) is a subgroup of Aut(M).

The following is an important lemma of Suslin that we need to prove Lemma
7.3.2.

Lemma 7.3.3 (Suslin) Let R = A[X] be a polynomial ring over a commuta-
tive ring A and let c be in A ∩ (f1, f2) for some f1, f2 in R. Then for any ideal
I of R and b, b′ in R with b− b′ in cI, there is a matrix u in SL2(R, I) such that

u(f1(b), f2(b)) = (f1(b
′), f2(b

′)).

Proof. We write c = f1(X)g1(X) + f2(X)g2(X) for some g1, g2 in R and
b′ = b+ cy for some y in I.

First we assume that c is a nonzero divisor. Write

α =

(

f1(b
′) −g2(b′)

f2(b
′) g1(b

′)

)(

g1(b) g2(b)
−f2(b) f1(b)

)

.

Then detα = c2 and α ≡ 0 (modulo c). Hence α = cu for some u. Since
c2detu = detα = c2 and c is nonzero divisor in A, it follows that u is in SL2(R).
Also note that there are λ, µ, γ, δ in R such that

α =

(

f1(b) + cyλ −g2(b) + cyµ
f2(b) + cyγ g1(b) + cyδ

)(

g1(b) g2(b)
−f2(b) f1(b)

)
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and hence

u =

(

1 + yλ′ yµ′

yγ′ 1 + yδ′

)

for some λ′, µ′, γ′, δ′ in R. Therefore u is in SL2(R, I).
Also since α(f1(b), f2(b)) = c((f1(b

′), f2(b
′)) we have

u((f1(b), f2(b))) = (f1(b
′), f2(b

′))

and the proof is complete in this case.
In the general case when c is possibly a zero divisor we proceed as follows.

Let Y, Z be two other variables and for i = 1, 2 let φi, ψi in A[X,Y, Z] be
defined by identities

1. fi(X + Y Z) = fi(X) + Y Zφi(X,Y, Z) and

2. gi(X + Y Z) = gi(X) + Y Zψi(X,Y, Z).

Write φ′i = φi(b, y, c) and ψ
′
i = ψi(b, y, c) and let

u =

(

1 + yφ′1g1(b) + yψ′
2f2(b) yφ′1 − yψ′

2f1(b)
yφ′2g1(b)− yψ′

1f2(b) 1 + yφ′2g2(b) + yψ′
1f1(b)

)

.

Clearly, u ≡ Id (modulo I). Now using the identity

c = f1(X)g1(X) + f2(X)g2(X)

= f1(X + Y Z)g1(X + Y Z) + f2(X + Y Z)g2(X + Y Z),

the proof of Lemma 7.3.3 is finished by direct computations.

Now we are ready to prove Lindel’s Lemma 7.3.2.

Proof of Lemma 7.3.2. We writeM = R2⊕N where N = {m in M : g1(m) =
g2(m) = 0}. Write G = SL2(R, sX)E l(M,X). Let J =

{b ∈ A : for h, h′ ∈ XR with h−h′ in (bsX), u(p(h)) = p(h′)for some u ∈ G}.

Clearly, J is an ideal. We shall prove that J = A.
First we claim that A ∩ (f1, f2) is contained in J . To prove this let b =

d1f1 + d2f2 be in A ∩ (f1, f2). Let h, h
′ be in R such that h(0) = h′(0) = 0

and h− h′ is in (bsX). By Lemma 7.3.3, there is an u in SL2(R, sX) such that
u(f1(h), f2(h)) = (f1(h

′), f2(h
′)).

As h− h′ is in (bsX), for any polynomial f in R we have f(h)− f(h′) is in
(bsX). Therefore

p(h) = f1(h)e1 + f2(h)e2 + f3(h
′)e3 + · · ·+ fr(h

′)− bw

for some w in sXN . Write u1 = (1 + d1(h)wg1)(1 + d2(h)wg2). Then u1 is in
E l(M,X) and

u1(p(h)) = p(h) + bw = f1(h)e1 + f2(h)e2 + f3(h
′)e3 + · · ·+ fr(h

′)er.
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Hence uu1(p(h)) = p(h′) and hence b is in J . So, the claim is established.
Now to prove J = A, assume the contrary that J is contained in a maximal

ideal m of A. Since f2 is monic, A/A ∩ (f1, f2) → R/(f1, f2) is integral. Also
since (f1, f2) + sR = R , it follows that A∩ (f1, f2)+ sA = A. Since (f1, f2)∩A
is contained in m, we have s is not in m.

As f1 ≡ 1 (modulo sX), it follows that (f1, f2, sXf3, . . . , sXfr) is unimod-
ular. Since dim(R/(m, f2)) = 0, by usual prime avoidance argument, (c, f2) +
mR = R for some c = f1 + sXc3f3 + · · · + sXcrfr with c3, . . . , cr in R. Again
since A/(c, f2) ∩A→ R/(c, f2) is integral it follows that (c, f2) ∩A+m = A.

Our next claim is that (c, f2) ∩ A is contained in J and hence in m. So, let
b be in (c, f2) ∩A and h, h′ be in R with h(0) = h′(0) = 0 and h− h′ in (sbX).
Write u1 = (1+ e1hc3(h)g3)(1 + e1hc4(h)g4) . . . (1 + e1hcr(h)gr) . Then u1 is in
E l(M,X) and

u1(p(h)) = p(h) + (hc3(h)sf3(h) + · · ·+ hcr(h)sfr(h))e1

= c(h)e1 + f2(h)e2 + · · ·+ fr(h)er.

Similarly, there is u2 in E l(M,X) such that

u2(p(h
′)) = c(h′)e1 + f2(h

′)e2 + · · ·+ fr(h
′)er.

By Lemma 7.3.3, there is u3 in SL2(R, sX) such that

u3(c(h)e1 + f2(h)e2 + f3(h)e3 + · · ·+ fr(h)er)

= c(h′)e1 + f2(h
′)e2 + f3(h)e3 + · · ·+ fr(h)er.

As in the first claim there is an u4 in E l(M,X) such that

u4(c(h
′)e1 + f2(h

′)e2 + f3(h)e3 + · · ·+ fr(h)er)

= c(h′)e1 + f2(h
′)e2 + f3(h

′)e3 + · · ·+ fr(h
′)er.

So, if we let u = u−1
2 u4u3u1 then u is in G and u(p(h)) = p(h′). Therefore,

as was claimed (c, f2)∩A is contained in J and hence in m. But this contradicts
the fact that (c, f2) ∩A+m = A. So, Lemma 7.3.2 is established.

The following is a version of a theorem of Suslin that will be useful later and
as well be helpful to understand the proof of our main Theorem 7.3.2 in this
section.

Corollary 7.3.1 Let R = A[X] be a polynomial ring over a commutative ring
A and let (f1, f2, . . . , fr) be a unimodular row with r ≥ 3, and f2 be monic. If
(f1(0), f2(0), . . . , fr(0)) = (1, 0, . . . , 0) then there is an u in E l(Rr, X) such that
u((f1, . . . , fr)) = (1, 0, . . . , 0).
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Proof. We apply Lemma 7.3.2 with s = 1 and the standard basis e1, . . . , er of
Rr. So,there is an u in E l(Rr, X) and v in SL2(R,X) such that

vu((f1, . . . , fr)) = (f1(0), . . . , fr(0)) = (1, 0, . . . , 0).

Hence u((f1, . . . , fr)) = (1 +Xg1, Xg2, 0, . . . , 0) for some g1, g2 in R.
Since the arguments will not be different, we assume r = 3 for notational

conveniences. There are λ1, λ2 in R such that (1+Xg1)λ1 +Xg2λ2 = 1. Write

w =





1 0 0
0 1 0

Xλ1 Xλ2 1



 ,

then w is in E l(R3, X)(see Lemma 7.3.1 part 2) and

w((1 +Xg1, Xg2, 0)) = (1 +Xg1, Xg2, X).

Now write

U1 =





1 0 −g1
0 1 0
0 0 1



 ,

U2 =





1 0 0
−Xg2 1 0

0 0 1



 ,

U3 =





1 0 0
0 1 0

−X 0 1



 .

By normality (Lemma 7.3.1), we have U = U−1
1 U3U2U1 is in E l(R3, X) and

U((1 +Xg1, Xg2, X)) = (1, 0, 0).

So, the proof of Corollary 7.3.1 is complete.

Corollary 7.3.2 Let R = A[X1, . . . , Xn] be a polynomial ring over a noetherian
commutative ring A with dim(A) = d. Let (f1, . . . , fr) be a unimodular row in
Rr with r ≥ max(3, d + 2) and (f1, . . . , fr) ≡ (1, 0, . . . , 0) (modulo Xn). Then
there is an u in E l(Rr, Xn) such that

u((f1, . . . , fr)) = (1, 0, . . . , 0).

Proof. By Theorem 4.1.1, there are a1, . . . , ar−1 in R such that with f ′i =
fi + aifr for i = 1, . . . , r − 1 we have height(f ′1, . . . , f

′
r−1) ≥ r − 1 > d . Since

fr is in (Xn), as in the proof of Corollary 7.3.1 there is an u in E l(Rr, Xn) such
that

u((f1, f2, . . . , fr)) = (f ′1, . . . , f
′
r−1, fr).
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Replacing (f1, . . . , fr) by (f ′1, . . . , f
′
r−1, fr) we assume that the height of the ideal

(f1, . . . , fr−1) is strictly bigger than d. By a change of variables (Theorem 6.1.5)
that sends Xi to Xi +XN

n for i = 1, . . . , n− 1 and Xn to Xn, for a large enough
N , we can assume that there is a polynomial f = λ1f1+ · · ·+λr−1fr−1 in R that
is monic in Xn. So, fr +Xkf is monic in Xn for some suitable integer k ≥ 1.
Again as in the proof of Corollary 7.3.1, there is a v in E l(Rr, X) such that

v((f1, . . . , fr)) = (f1, . . . , fr−1, fr +Xkf).

Since fr + Xkf is monic in Xn, and (f1, . . . , fr−1, fr + Xkf) ≡ (1, 0, . . . , 0)
(modulo Xn), it follows from Corollary 7.3.1 that there is a w in E l(Rr, X) such
that wv((f1, . . . , fr)) = (1, 0, . . . , 0). This completes the proof of Corollary 7.3.2.

Now we are ready to state the main theorem of Lindel in this section.

Theorem 7.3.1 (Lindel,[L2]) Suppose R = A[X1, . . . , Xn] is a polynomial
ring over a noetherian commutative ring A with dim(A) = d. Suppose P is
a finitely generated projective R-module with rank(P℘) ≥ max(2, d+1) for all ℘
in Spec(R). Let (a, p) be a unimodular element in R⊕P . Then there is an u in
E l(R⊕ P ) such that u((a, p)) = (1, 0).

Further, if (a, p) ≡ (1, 0) (modulo Xn) then there is an u in E l(R ⊕ P,Xn)
such that u((a, p)) = (1, 0).

Proof. First we prove the last part. Note also that we can assume that Spec(A)
is connected. Hence rank(P ) = r0 is constant. Since for the nilradical N of A,
E l(R⊕P,Xn) → E l((R⊕P )/N(R⊕P ), Xn) is surjective (see Lemma 7.3.1), we
can assume that A is reduced. We shall use induction on dim(A) = d.

If d = 0 then P is free by Quillen-Suslin theorem (Theorem 3.2.2 or 7.2.1).
In this case the assertion follows from Corollary 7.3.2.

Now we assume that d > 0. By Theorem 7.2.1, we can write P = R⊕P ′ for
some projective R-module P ′. We write Q = R ⊕ P = R2 ⊕ P ′ and rankQ =
r = r0 + 1.

Let S be the set of all nonzero divisors of A. So, S−1P ′ is free of rank
r − 2. As in Proposition 7.2.1, we can find a nonzero divisor s of A and a free
submodule F of P ′ with basis e3, . . . , er and a free submodule G of P ′∗ with
basis g3, . . . , gr such that sP ′ ⊆ F, sP ∗ ⊆ G and the matrix

(< gi, ej >: 1, j = 3, . . . , r) = diagonal (s, . . . , s).

Let e1, e2, respectively, denote the elements (1, 0, 0) and (0, 1, 0) in Q =
R2 ⊕ P ′. For i = 3, . . . , r we extend gi to Q by defining gi(e1) = gi(e2) = 0. We
define g1, g2 in Q∗ such that g1|P ′ = g2|P ′ = 0 and the matrix

(< gi, ej >: i, j = 1, 2) = diagonal (1, 1).
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Thus we have that the matrix

(< gi, ej >: i, j = 1, . . . , r) = diagonal (1, 1, s, . . . , s).

We shall writeXn = X and a = f1. So, (a, p) = f1e1+f2e2+p
′ for some f1, f2

in R and p′ in P ′. As (f1, p) ≡ (1, 0) (modulo X), we have f1(0) = 1, f2(0) = 0
and p′ is in XP ′. (For a polynomial f in R, f(0) denotes f(X1, . . . , Xn−1, 0).)

Since dim(A/sA) < d, by induction, there is an u′ in E l(Q/sQ,X) such that
u′(f1q1+f2q2+q

′) = q1, where q1, q2, q
′ are ,respectively, the images of e1, e2, p

′

in Q/sQ. Since Um(Q) → Um(Q/sQ) is surjective (see Theorem 7.2.2), there
is an u in E l(Q,X) that lifts u′ (Lemma 7.3.1). Hence replacing f1e1+ f2e2+ p′

by u(f1e1 + f2e2 + p′) we assume that f1 ≡ 1 (modulo sX), f2 is in (sX) and p′

is in sXP ′.

Since f1e1 + f2e2 + p′ is unimodular and f1 ≡ 1 (modulo sX), we have
f1e1 + sXf2e2 + p′ is also unimodular. Hence by Theorem 4.1.1, there is an h1
in R and a p′′ in P ′ such that the ideal

I = R(f1 + h1sXf2) +O(p′ + sXf2p
′′)

has height at least r−1 ≥ d+1. Therefore, after a change of variables (Theorem
6.1.5), that sends Xi to Xi +XN for i = 1, . . . , n − 1 and X to X, where N is
large enough, we can assume that I contains a monic polynomial h in X with
coefficients in A[X1, . . . , Xn−1].

Now we write R = B[X] where B = A[X1, . . . , Xn−1]. We also write h =
(f1 + sXf2h1)h

′ + g(p′ + sXf2p
′′) for some h′ in R and g in P ∗. Let k be a

positive integer such that f2+X
kh is a monic polynomial in X. We shall regard

g as an element in Q∗ by putting g(e1) = g(e2) = 0.

For i = 1, . . . , 4 define ui in E l(Q,X) as follows:

u1 = 1 + e1sXh1g2,

u2 = 1 + sXp′′g2,

u3 = 1 + e2X
kh′g1,

u4 = 1 + e2X
kg.

By replacing f1e1 + f2e2 + p′ by u4u3u2u1(f1e1 + f2e2 + p′) we assume that
f1 ≡ 1 (modulo sX), f2(0) = 0 and that p′ is in sXP ′.

Since sP ′ ⊆ F , we have p′ = X(f3e3 + · · · + frer) for some f3, . . . , fr in R.
Thus

f1e1 + f2e2 + p′ = f1e1 + f2e2 +Xf3e3 + · · ·+Xfrer.

As f1 ≡ 1 (modulo sX) and f2 is monic, we have (f1, f2) ∩ B + sB = B. So,
there is an element b in B such that 1− sb is in (f1, f2). Moreover f1e1 + f2e2 +
Xf3e3 + · · · +Xfrer is unimodular. Since Qs is free and f1 ≡ 1 (modulo sX)
we have (f1, f2, Xf3, . . . , Xfr) is a unimodular row.
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By an application of Lemma 7.3.2, with h = X and h′ = (1 − sb)X, we get
an u5 in E l(Q,X) and an u6 in SL2(R, sX) such that

u5(f1e1 + f2e2 +Xf3e3 + · · ·+Xfrer) =

f ′1e1 + f ′2e2 + (1− sb)Xf3((1− sb)X)e3 + · · ·+ (1− sb)Xfr((1− sb)X)er,

where u6((f
′
1, f

′
2)) = (f1((1− sb)X), f2((1− sb)X)).

Note that fi(X) − fi((1 − sb)X) is in (sX) for i = 1, 2 and also since u6 is
in SL2(R, sX), we have f ′i((1 − sb)X) − f ′i(X) is in (sX) for i = 1, 2. Hence
f ′1 ≡ f1 ≡ 1 (modulo sX) and f ′2(0) = f2(0) = 0. It also follows that 1− sb is in
(f ′1, f

′
2)R = (f1((1− sb)X), f2((1− sb)X))R. As

f ′1e1 + f ′2e2 + (1− sb)Xf3((1− sb)X)e3 + · · ·+ (1− sb)Xfr((1− sb)X)er

is unimodular and since 1−sb is in (f ′1, f
′
2), it follows that f

′
1e1+f

′
2e2 is unimodu-

lar in Q and hence in R2. Therefore, there is g in Q∗ such that g(f ′1e1+f
′
2e2) = 1

and g|P ′ = 0. Let

v3 = 1 + (X + (sb− 1)Xf3((1− sb)X))e3g and

vi = 1 + ei(sb− 1)Xfi((1− sb)X)g

for i = 4, . . . , r and v = v3v4 . . . vr. Then v is in E l(Q,X) and

vu5(f1e1 + f2e2 +Xf3e3 + · · ·+Xfrer)

= v(f ′1e1 + f ′2e2 + (1− sb)Xf3((1− sb)X)e3 + · · ·+ (1− sb)Xfr((1− sb)X)er)

= f ′1e1 + f ′2e2 +Xe3.

Now we can write f ′1 = 1 + sXf ′′1 , f
′
2 = Xf ′′2 for some f ′′1 , f

′′
2 in R. Let

U1 = 1−e1f ′′1 g3, U2 = 1−e2Xf ′′2 g1, U3 = 1−Xe3g1 and write U = U−1
1 U3U2U1.

Then, since U2, U3 are in E l(Q,X), we have U is in E l(Q,X). Finally,

U(f ′1e1 + f ′2e2 +Xe3) = e1.

This completes the proof of the later part of Theorem 7.3.1.
To prove the first part of Theorem 7.3.1, we proceed by induction on the

number of variables n. (Or we could repeat the above arguments with an appro-
priate version of Lindel’s Lemma 7.3.2). If n = 0 then the assertion follows from
Theorem 4.1.1. If n ≥ 1, then since E l(R ⊕ P ) → E l((R ⊕ P )/Xn(R ⊕ P )) is
surjective, we can assume that (a, p) ≡ (1, 0) (modulo Xn). Now the assertion
follows from the later part of the theorem. This complete the proof of Theorem
7.3.1.

The following theorem of Suslin is an immediate consequence of Theorem
7.3.1 and Lemma 7.3.1.
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Theorem 7.3.2 (Suslin) Let R = k[X1, . . . , Xn] be a polynomial ring over a
field k. Let (f1, . . . , fr) be a unimodular row in Rr with r ≥ 3. Then there is an
elementary matrix u in Er(R) such that u((f1, . . . , fr)) = (1, 0, . . . , 0).

The following theorem of Rao on Cancellation of projective modules is also
an immediate consequence of Theorem 7.3.1.

Theorem 7.3.3 (Rao) Let R = A[X1, . . . , Xn] be polynomial ring over a com-
mutative noetherian ring A with dim(A) = d. Suppose that P is a finitely gen-
erated projective R-module with rank(P℘) ≥ d + 1 for all ℘ in Spec(R). Then
P has cancellative property, i.e. P ⊕ Q ≈ P ′ ⊕ Q for some finitely generated
projective R-modules Q and P ′ implies that P ≈ P ′.

Proof. It suffices to prove the theorem when Q = R. Let ϕ : P ′ ⊕ R → P ⊕ R
be an isomorphism and ϕ((0, 1)) = (p, a). By Theorem 7.3.1, there is an u in
E l(P ⊕ R) such that u((p, a)) = (0, 1) and hence uϕ((0, 1)) = (0, 1). Therefore
uϕ induces an isomorphism P ′ ≈ P and the proof of Theorem 7.3.3 is complete.

The following conjecture about lifting of automorphisms of projective mod-
ules was considered in ([BM]).

Conjecture 7.3.1 ([BM]) Suppose R = A[X] is a polynomial ring over a
noetherian commutative ring A with dim(A) = d. Let P be a finitely gener-
ated projective R-module. Then, whether the natural map

AutR(P ) → AutA(P/XP )

is surjective?

The following partial answer on the conjecture 7.3.1 was obtained in ([BM]).

Theorem 7.3.4 (Bhatwadekar-Mandal) Suppose R = A[X1, . . . , Xn] is a
polynomial ring over a noetherian commutative ring A with dim(A) = d. Let
P be a finitely generated projective R-module with rank(P℘) ≥ d + 1 for all
℘ in Spec(R).Then the map AutR(P ) → AutA′(P/XnP ) is surjective, where
A′ = A[X1, . . . , Xn−1].

Proof. Without loss of generality we can assume that rank(P ) = r is constant.
If r = 1 then Aut(P ) is isomorphic to the group of units of R and Aut(P/XnP )
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is isomorphic to the group of units of A′. Hence Aut(P ) → Aut(P/XnP ) is
surjective. So, we assume r ≥ 2. Also note that if P is free of rank r then
Aut(P ) ≈ GLr(R) → Aut(P/XnP ) ≈ GLr(A

′) is surjective.
Now let Q be a finitely generated R-module such that F = P ⊕ Q is free.

Let ”overbar” denote (modulo Xn).Let g be an automorphism of P̄ . So, g⊕ IdQ̄
can be lifted to an automorphism of P ⊕ Q = F . Hence g ⊕ IdQ̄ ⊕ IdP̄ can
also be lifted to an automorphism of P ⊕ Q ⊕ P . This means that there is an
automorphism H : P ⊕ F → P ⊕ F such that H̄ = g ⊕ IdF̄ .

By downward induction we can assume that there is an automorphism

H : P ⊕R→ P ⊕R

such that H̄ = g ⊕ IdR̄. Let H((0, 1) = (p, a). Then, since H̄ = g ⊕ IdR̄, we
have (p, a) ≡ (0, 1) (modulo Xn). Hence, by Theorem 7.3.1 there is an u in
E l(P ⊕R,X) such that u((p, a)) = (0, 1). Let ϕ = uH. Since ϕ((0, 1)) = (0, 1),
ϕ induces an automorphism h of P . Since ū = Id, we have h̄ = g and the proof
of Theorem 7.3.4 is complete.
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