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In this article, we prove some results on Witt, Grothendieck–Witt (GW ) and 
K-theory of noetherian quasi-projective schemes X, over affine schemes Spec (A). 
For integers k ≥ 0, let CMk(X) denote the category of coherent OX -modules F , 
with locally free dimension dimV (X)(F) = k = grade(F). We prove that there is 
an equivalence Db

(
CMk(X)

)
→ Dk (V (X)) of the derived categories. It follows 

that there is a sequence of zig-zag maps K 
(
CMk+1(X)

)
−→ K 

(
CMk(X)

)
−→∐

x∈X(k) K 
(
CMk(Xx)

)
of the K-theory spectra that is a homotopy fibration. In fact, 

this is analogous to the homotopy fiber sequence of the G-theory spaces of Quillen 
(see proof of [16, Theorem 5.4]). We also establish similar homotopy fibrations of 
GW-spectra and GW -bispectra, by application of the same equivalence theorem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In [16], Quillen established the foundation of K-theory of regular schemes X in a complete manner. 
In fact, for any scheme X, Quillen provides a complete foundation of K-theory of the category Coh(X)
of the coherent sheaves on X, along with that of the filtration of Coh(X) by co-dimension of support of 
the objects F ∈ Coh(X). This relates to Gersten complexes and spectral sequences associated to any such 
scheme X (see [16, §5]). The K-theory of Coh(X) is also known as G-theory. For regular schemes X, the 
K-theory of the category V (X) of locally free sheaves agrees fully with that of Coh(X). Consequently, 
the K-theory of regular schemes appears very complete. However, the K-theory of non-regular schemes 
never reached the completeness and harmony that the K-theory of regular schemes had achieved. Work of 
Waldhausen [23] and Thomason–Trobaugh [22] would be milestones in this respect, most notably for their 
introduction of derived invariance theorems and localization theorems, applicable to non-regular schemes. 
Further, while developments in Grothendieck–Witt theory (GW -theory) and Witt theory followed the foot 
prints of K-theory [20,1], due to the lack of any natural duality on Coh(X), the situation in these two areas 
appears even less complete. When X is non-regular, the category M(X) of coherent sheaves with finite 
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V (X)-dimension differs from Coh(X). There appears to be a gap in the literature of K-theory, GW -theory, 
and Witt theory, with respect to the place of the category M(X). One can speculate, whether this lack of 
completeness is attributable to this gap. The goal of this one and the related articles is to work on this 
gap and attempt to establish the said literature on non-regular schemes at the same pedestal as that of 
regular schemes. For quasi-projective schemes over noetherian affine schemes, this goal is accomplished up 
to some degree of satisfaction. The special place of the full subcategory CM

k(X) ⊆ M(X) would also be 
clear subsequently, where for integers k ≥ 0, CM

k(X) will denote the full subcategory of objects F in M(X), 
with dimV (X)(F) = grade (F) = k.

With respect to certain facets of Algebraic K-theory, Grothendieck–Witt (GW ) theory and Witt theory, 
a common thread among them is their invariance properties with respect to equivalences of the associated 
Derived categories. We review some of the results on such invariances. For example, recall the theorem of 
Thomason–Trobaugh [22, Theorem 1.9.8]: suppose A → B is a functor of complicial exact categories with 
weak equivalences. Assume that the associated functor of the triangulated categories T A → T B is an 
equivalence. Then, the induced map K(A) → K(B) of the K-theory spaces is a homotopy equivalence (see 
[18, 3.2.24]). The non-connective version of this theorem was given by Schlichting ([19, Theorem 9], also see 
[18, 3.2.29]) which states, under the relaxed hypothesis, that: if T A → T B is an equivalence up to factors, 
then it induces a homotopy equivalence K(A) → K(B) of the K-theory spectra. While K-theory is defined 
for complicial exact categories with weak equivalences, Schlichting defined Grothendieck Witt (GW ) spectra 
and bispectra ([20], also see Appendix A) of pointed dg categories with weak equivalences and dualities. 
Invariance theorems of GW-spectra and GW -bispectra, similar to that of K-theory, were established in [20, 
Theorems 6.5, 8.9]. Contrary to K-theory and GW -theory, Balmer defined Witt theory for Triangulated 
categories with dualities [1], which encompasses the Derived categories with dualities. Therefore, the shifted 
Witt groups are invariant with respect to equivalences of derived categories [1, Theorem 6.2]. Another 
common thread among these three areas is the exactness properties of the associated triangulated categories. 
In particular, the renowned Gersten complexes in K-theory, GW -theory and Witt theory, are obtained 
by routine manipulation (see Remark 4.5) of the respective invariants, by such derived equivalences and 
exactness properties of the associated triangulated categories. For our purpose, some of the existing exactness 
theorems [2,4] of derived categories would suffice. Therefore, we first consider equivalences of certain derived 
categories, over quasi-projective schemes, which we state subsequently.

The readers are referred to Notations 2.1 for clarifications regarding notations and the definition of grade. 
Other than the notations explained above, for integers k ≥ 0, Mk(X) will denote the category of coherent 
OX -modules F with finite locally free dimension, and grade (F) ≥ k. We prove that, for a noetherian 
quasi-projective scheme X over an affine scheme Spec (A), and integers k ≥ 0, the functor of the derived 
categories

ζ : Db
(
CM

k(X)
)
→ Db

(
M

k(X)
)

is an equivalence

(see Theorem 3.1). We also prove that the functor of the derived categories

β : Db
(
M

k+1(X)
)
→ Db

(
M

k(X)
)

is faithfully full

(see Theorem 3.2). Consequently, the functor Db
(
CM

k+1(X)
)
→ Db

(
M

k(X)
)

is faithfully full. Combining 
the results in [13], we have the following summary of results. Consider the commutative diagram

Db(CM
k+1(X))

ζ

∼

α

Db(Mk+1(X)) ι

∼

β

Dk+1(M(X))

γ

Dk+1(V (X))

η

ι′

∼

Db(CM
k(X))

ζ

∼ Db(Mk(X))
ι

∼
Dk(M(X)) Dk(V (X))

ι′

∼

(1)
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of functors of derived categories. Then, all the horizontal functors are equivalences and, all the vertical 
functors are fully faithful (see Theorem 3.4).

Having stated the equivalence theorem (3.4), we first turn our attention to its consequences to Algebraic 
K-theory of quasi-projective schemes X over an affine scheme Spec (A). Note that CM

k(X) is an exact 
category. Quillen [16] defined K-theory space K (E ) of any exact category E . To incorporate negative 
K-groups, following Bass, Karoubi and others, Schlichting formally introduced [18,19] K-theory spectrum 
K (E ) for such exact categories E , and also of complicial exact categories with weak equivalences. By 
agreement theorems ([22, Theorem 1.11.17], [18, 3.2.30]), there are homotopy equivalences

{
K (E ) ∼−→ K

(
Chb (E )

)
of the K-theory spaces,

K (E ) ∼−→ K
(
Chb (E )

)
of the K-theory spectra,

where the right hand sides correspond to the K-theory space/spectrum of the category Chb (E ) of chain 
complexes. Since CM

k(X) is an exact category, the agreement theorems apply. Now, by application of 
the Derived Equivalence Theorem 3.4, for a noetherian quasi-projective scheme X, over an affine scheme 
Spec (A), we obtain zig-zag homotopy equivalences (see 2.1 for notations)

{
K

(
CM

k(X)
) ∼−→ K

(
Chk (V (X))

)
of the K-theory spaces,

K
(
CM

k(X)
) ∼−→ K

(
Chk (V (X))

)
of the K-theory spectra.

(2)

Now assume that X is Cohen–Macaulay. In this case, the Thomason–Waldhausen Localization theorem [18, 
3.2.27] applies to the inclusion Chk+1 (V (X)) ↪→ Chk (V (X)), and using the identifications (2), we obtain 
a sequence

K
(
CM

k+1(X)
)

K
(
CM

k(X)
) ∐

x∈X(k) K
(
CM

k(Xx)
)

of zig-zag maps (via homotopy equivalences) of K-theory spectra, that is a homotopy fibration (see Theo-
rem 4.2), where Xx := Spec (OX,x). This is an analogue of the homotopy fiber sequence of the G-theory 
spaces, due to Quillen (see proof of [16, Theorem 5.4]). Accordingly, for all integers n, k ∈ Z with k ≥ 0, 
there is an exact sequence

· · · Kn

(
CM

k+1(X)
)

Kn

(
CM

k(X)
)

⊕x∈X(k)Kn

(
CM

k(Xx)
)

Kn−1
(
CM

k+1(X)
)

· · ·

of K-groups (see Corollary 4.3). We remark (4.4) that, if X is regular, similar statements regarding K-theory 
spaces and groups would also be valid. While these results allow us to rewrite the Gersten K-theory complexes 
in terms of the K-groups of the “local categories” CM

k(Xx) (see Remark 4.5), they provide further insight in 
to the same in terms of the K-groups of CM

k(X). When, A is a Cohen–Macaulay local ring with dimA = d

and X = Spec (A), it is a result of Roberts and Srinivas [17, Proposition 2] that the map K0
(
CM

d(X)
) ∼−→

K0
(
Chd (V (X))

)
is an isomorphism, which would be a consequence of the above homotopy equivalence (2).

Results on GW -theory would be fairly similar. Note that in the diagram (1) of equivalences, the dg 
category dgMk(X), associated to Mk(X), does not have a natural duality structure. Remedy for this was 
obtained by embedding this category in the respective category of perfect complexes. We assume that X is 
a quasi-projective scheme over an affine scheme Spec (A), with 1/2 ∈ A. Then, for integers r = 0, 1, 2, 3 and 
k ≥ 0, we obtain zig-zag homotopy equivalences
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{
GW[r] (dgCM

k(X)
) ∼−→ GW[k+r] (dgkV (X)

)
of the GW-spectra,

GW [r] (dgCM
k(X)

) ∼−→ GW [k+r] (dgkV (X)
)

of the GW -bispectra.
(3)

When X is Cohen–Macaulay, there is sequence of zig-zag maps

GW [−1+r] (dgCM
k+1(X)

)
GW [r] (dgCM

k(X)
) ∐

x∈X(k) GW [r] (dgCM
k (Xx)

)
that is a homotopy fibration of GW -bispectra. When X is regular, similar homotopy fibration of GW-spectra 
would also be valid. Again, this is a GW -analogue of the homotopy fiber sequence of the G-theory spaces 
of Quillen (see the proof of [16, Theorem 5.4]). Note that such statements about Grothendieck Witt theory 
would not make sense for dgMk(X) or dgCohk(X), because of non-existence of any natural duality in the 
respective categories.

With respect to implications to the derived Witt theory, assume that X is regular quasi-projective scheme 
over an affine scheme Spec (A), with 1/2 ∈ A. For an integer k ≥ 0, consider the exact sequence of the 
derived categories [4]:

Dk+1 (V (X)) Dk (V (X))
∐

x∈X(k) Dk (V (X)) .

Then, the twelve term exact sequence of Witt groups, due to Balmer [1, Corollary 6.6], corresponding to this 
sequence, reduces to two five term exact sequences (see Theorem 4.16), one of them being the following:

0 W−1 (Db
(
CM

k+1(X)
))

W
(
CM

k(X)
)

⊕x∈X(k)W
(
CM

k(Xx)
)

W
(
CM

k+1(X)
)

W 1 (Db
(
CM

k(X)
))

0

We point out that, contrary to the usual filtration by co-dimension of the support, in this article, for a 
scheme X we consider the filtrations Mk(X) ⊆ M(X) and Cohk(X) ⊆ Coh(X) by grade (see Notations 2.1). 
When X is Cohen–Macaulay, these filtrations coincide with the filtration by co-dimension of the support. 
This article is a culmination of an initiative [9–11,15,12,13] to place the category CM

k(X) at its rightful place 
in the Algebraic K-theory, GW -theory and Witt theory of schemes X and the respective Gersten complexes. 
This category CM

k(X) behaves like the category of modules of finite length and finite projective dimension, 
at co-dimension k ≤ dimX.

Before we close this introduction, we comment on the layout of this article. In §2 we recall or prove some 
preliminaries that we need. The Derived Equivalence Theorem 3.4 is established in §3. In §4.1 we establish 
the implications in K-theory. We deal with GW -theory in §4.2. In §4.3 we discuss Derived Witt theory. In 
Appendix A, we give some background information on GW-spectrum and GW -bispectrum.

2. Preliminaries

First, we set up some notations.

Notations 2.1. Throughout this article, X will denote a noetherian scheme, with finite dimension d := dimX. 
In most cases, X will be a quasi-projective scheme over a noetherian affine scheme Spec(A). We introduce 
further notations.

1. For x ∈ X, denote Xx := Spec (OX,x).
2. Throughout, Coh(X) will denote the category of coherent OX -modules and V (X) will denote the 

category of all locally free sheaves on X.
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3. (Readers are referred to [11, Def. 3.1] for a definition of resolving subcategories of abelian categories.) 
For a resolving subcategory A of an abelian category C, for objects F ∈ C, dimA (F) will denote the 
minimum of the length of resolutions of F by objects in A .
Denote

M(A ) = {F ∈ C : dimA (F) < ∞}

With C = Coh(X) we denote

M(X) := M(V (X)) = {F ∈ Coh(X) : dimV (X)(F) < ∞}

4. In this article, we consider filtration of Coh(X) and M(X) by grade, as opposed to usual filtration by 
co-dimension of the support.
(a) Recall, for F ∈ Coh(X), grade(F) := min{t : Extt(F , OX) 	= 0}. We remark that, if X is Cohen–

Macaulay, then grade(F) = co dim (Supp(F)) (see [14]).
(b) For integers k ≥ 0, denote⎧⎪⎨⎪⎩

Cohk(X) := Cohk
g(X) := {F ∈ Coh(X) : grade(F) ≥ k}

M
k(X) := M

k

g(A ) := {F ∈ M(X) : grade(F) ≥ k}
CM

k(X) := {F ∈ M(X) : grade(F) = k = dimV (X)(F)}

So, we have a filtration, by grade M(A ) = M
0(A ) ⊇ M

1(A ) ⊇ · · · ⊇ M
d(A ) ⊇ 0. We will strictly 

be using this filtration by grade and the notation without the subscript g will be the norm. Note 
that Mk(A ) is a Serre subcategory of M(A ) (meaning, it has the “2 out of 3” property). Clearly, 
when X is Cohen–Macaulay, this filtration coincides with the filtration by co-dimension of the 
support. Also note that Cohk(X) is a Serre abelian subcategory of Coh(X).

5. For an exact category E , Chb(E ) will denote the category of chain complexes. The bounded derived 
category of E will be denoted by Db(E ).

6. For a complex F• ∈ Chb (Coh(X)), the homologies will be denoted by Hi (F•).
7. Also, for E = V (X), M(X), and integers k ≥ 0,⎧⎨⎩ Chk (E ) :=

{
F• ∈ Chb (E ) : ∀ i Hi (F•) ∈ Cohk(X)

}
Dk (E ) :=

{
F• ∈ Db (E ) : ∀ i Hi (F•) ∈ Cohk(X)

}
would denote the full subcategory of such objects. (Note the difference between two fonts D, D .) We 
remark:
(a) Chk (E ) is a complicial exact category (see [18] for definition). In fact, 

(
Chk (E ) ,Q

)
is a compli-

cial exact category with weak equivalences, where weak equivalences are the set Q of all quasi-
isomorphisms.

(b) Also, Dk (E ) is a triangulated subcategory of Db (E ).

We recall the following lemma from [13, Lemma 2.1].

Lemma 2.2. Suppose X is a quasi-projective noetherian scheme over Spec (A), with dimX = d. Then, X is 
an open subset of X̃ := Proj(S), for some noetherian graded ring S = ⊕∞

i=0Si, with S0 = A.
Let Y ⊆ X be a closed subset of X, with grade (OY ) ≥ k. Let V (I) = Y be the closure of Y , where I is 

the homogeneous ideal of S, defining Y . Then, there is a sequence of homogeneous elements f1, . . . , fk ∈ I

such that fi1 , . . . , fij induce regular S(℘)-sequences ∀ ℘ ∈ Y ⊆ X, and ∀ 1 ≤ i1 < i2 < · · · < ij ≤ k. In 
particular, with Z = V (f1, . . . , fk) ∩X, and Fn = On

Z , we have
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1. Fn ∈ CM
k(X). In fact, ⊕n

i=1OZ ⊗ Li ∈ CM
k(X) for any locally free sheaves Li of rank one.

2. Further, if G ∈ Cohk(X), with Y = Supp (G) and Z as above, there is a surjective map F � G where 
F := ⊕n

i=1OZ ⊗Ox(ni), for some integers ni. Note that F ∈ CM
k(X).

Remark 2.3. In this, one had the choices of the sequence f1, . . . , fk, as required above. We may exploit this 
flexibility later.

Lemma 2.4. Suppose X is a quasi-projective noetherian scheme over Spec (A), with dimX = d. Consider 
an exact sequence

0 K E F 0 where F ∈ M
k(X), E ∈ CM

k(X).

Then dimV (X)(K) ≤ max{k, dimV (X)(F) − 1}. In fact, dimV (X)(F) ≥ k + 1 =⇒ dimV (X)(K) =
dimV (X)(F) − 1.

Proof. If dimV (X)(F) = k then there is nothing to prove. Assume, dimV (X)(F) = m ≥ k + 1. Arguing 
locally, a simple Tor-argument establishes the lemma. �
Lemma 2.5. Suppose X is a quasi-projective noetherian scheme over Spec (A), with dimX = d. Suppose 
F ∈ M

k(X). Then, there is a resolution

0 En En−1
∂n−1 · · · E1 E0 F 0 with Ei ∈ CM

k(X). (4)

In fact, n = dimV (X)(F) − k.

Proof. By Lemma 2.2, there is a surjective map ∂0 : E0 � F , where E0 ∈ CM
k(X). Now, let F0 = ker(∂0). 

If dimV (X)(F) ≥ k+1, then by Lemma 2.4, dimV (X)(F0) = dimV (X)(F) − 1. By repeating this process, we 
get an exact sequence, as in diagram (4), with En = ker(∂n−1) and dimV (X)(En) = k. Since grade(En) ≥ k, 
it follows En ∈ CM

k(X). The proof is complete. �
Proposition 2.6. Suppose X is a quasi-projective noetherian scheme over Spec (A), with dimX = d. Suppose

0 K F G 0 be exact in M
k(X)

Then:

1. First,

K,G ∈ CM
k(X) =⇒ F ∈ CM

k(X)

2. Then,

F ,G ∈ CM
k(X) =⇒ K ∈ CM

k(X)

Proof. The proof follows by routine chasing the long exact sequence of the Ext-modules. �
Corollary 2.7. Let X be a quasi-projective scheme over an affine scheme Spec (A). Then, CM

k(X) ⊆
Cohk(X) is a resolving subcategory. Further,

M
k(X) = {F ∈ Cohk(X) : dimCMk(X)(F) < ∞}
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Proof. Let G ∈ Cohk(X) be an object. By Lemma 2.2, there is a surjective morphism F � G with F ∈
CM

k(X). Now it follows from Lemma 2.6 that CM
k(X) is a resolving subcategory of Cohk(X).

Now, suppose F ∈ M
k(X). By Lemma 2.5, dimCMk(X)(F) < ∞. Conversely, suppose F ∈ Cohk(X) and 

dimCMk(X)(F) < ∞. In particular, dimV (X)(F) < ∞. So, F ∈ M(X) and hence F ∈ M
k(X). The proof is 

complete. �
3. The equivalence theorems

In this section we state and prove the key equivalence theorems.

Theorem 3.1. Let X be a noetherian quasi-projective scheme over an affine scheme Spec (A) and k ≥ 0 be 
a fixed integer. Consider the inclusion functor CM

k(X) ↪→ M
k(X) and let

ζ : Db
(
CM

k(X)
)
−→ Db

(
M

k(X)
)

denote the induced functor

of the derived categories. Then ζ is an equivalence of derived categories.

Proof. The proof is obtained by an application of the statement in [8, Last paragraph of §1.5], to the 
inclusion functor CM

k(X) ↪→ M
k(X), as follows. Consider the diagram:

0 F1 F0

f0

F 0

0 G1 G0 ι0
F 0

(5)

where the second line is a given exact sequence in Mk(X), with F ∈ CM
k(X). By Lemma 2.2, there is a 

surjective map f0 : F0 → G0, where F0 ∈ CM
k(X), and let F1 = ker(ι0f0). By Lemma 2.6, F1 ∈ CM

k(X)
and hence the top line is an exact sequence in CM

k(X). This establishes that (the dual of) the condition 
(b) of [8, Last paragraph of §1.5] is satisfied. The condition (a) of [8, Last paragraph of §1.5] is also satisfied 
by Lemma 2.5. It follows from the statement in [8, Last paragraph of §1.5] that ζ is an equivalence. The 
proof is complete. �

Using a very similar proof as above we obtain the following.

Theorem 3.2. Let X be a noetherian quasi-projective scheme as in Theorem 3.1 and k ≥ 0 be a fixed integer. 
Consider the inclusion functor Mk+1(X) → M

k(X). Then, the induced functor β : Db
(
M

k+1(X)
)
−→

Db
(
M

k(X)
)

is fully faithful. Consequently, so is the functor Db
(
CM

k+1(X)
)
−→ Db

(
M

k(X)
)
.

Proof. Consider the following commutative diagram of triangle functors:

Db
(
M

k+1(X)
) ψk+1

β

Db
(
Cohk+1(X)

)
β′

Db
(
M

k(X)
)

ψk

Db
(
Cohk(X)

)
Replicating the diagram (5), both ψk, ψk+1 are fully faithful, by Keller’s criterion [8, §1.5]. Further, β′ is 
also fully faithful. Now β is fully faithful, since so are ψk, ψk+1, β′.
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By Theorem 3.1 the functor ζ : Db
(
CM

k+1(X)
) ∼−→ Db

(
M

k+1(X)
)

is an equivalence. Therefore, the 
second statement follows from the former. The proof is complete. �
Remark 3.3. The author is thankful to the referee for pointing out the above shortened proofs of Theorems 3.1
and 3.2. Some readers may benefit from the original, more explicit proofs of the same, which can be found 
in the arXiv version of this article.

Combining the results in [13], we summarize the results as follows.

Theorem 3.4. Let X be a noetherian quasi-projective scheme as in Theorem 3.1 and k ≥ 0 be a fixed integer. 
Consider the commutative diagram of functors of derived categories:

Db(CM
k+1(X))

ζ

∼

α

Db(Mk+1(X)) ι

∼

β

Dk+1(M(X))

γ

Dk+1(V (X))

η

ι′

∼

Db(CM
k(X))

ζ

∼ Db(Mk(X))
ι

∼
Dk(M(X)) Dk(V (X))

ι′

∼

(6)

Then, all the horizontal functors are equivalences of derived categories and all the vertical functors are fully 
faithful.

Proof. The equivalences of the horizontal functors follow from Theorem 3.1 and the results in [13, Theo-
rem 3.2]. It also follows from Theorem 3.2 that β is fully faithful. This completes the proof. �
4. Implications in K-theory and others

In this section we discuss the implications of the equivalence Theorem 3.4. We will not repeat the prelude 
we provided in the introduction. First, we recall a notation and a lemma. For a noetherian scheme X, 
denote

X(k) := {Y ∈ X : co dim (Y ) = k} and recall Xx := Spec (OX,x) .

We recall the following well known result that follows from [2,4].

Lemma 4.1. Suppose X is a Cohen–Macaulay quasi-projective scheme over an affine scheme Spec (A) and 
k ≥ 0 is an integer. Then, the sequence of derived categories

Dk+1 (V (X)) Dk (V (X))
∐

x∈X(k) Dk (V (Xx))

is exact up to factor. If X is regular, this sequence is exact.

4.1. K-theory

First, we consider the consequences in K-theory. Our standard reference for K-theory would be [18] and 
we freely use the definitions and notations from [18]. However, for an exact category E or a complicial exact 
category E with weak equivalences, K(E ) will denote the K-theory spectra of E and Ki(E ) will denote the 
K-groups. Likewise, K(E ) would denote the K-theory space of E .
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The following is the main application of Theorem 3.4 to K-theory.

Theorem 4.2. Suppose X is a noetherian quasi-projective scheme over an affine scheme Spec (A) and k ≥ 0
is an integer. Consider the diagram of K-theory spectra and maps:

K
(
CM

k+1(X)
)

�

K
(
CM

k(X)
)

� Ψ

∐
x∈X(k) K

(
CM

k (Xx)
)

�

K
(
Chk+1 (M(X)) ,Q

)
K
(
Chk (M(X)) ,Q

) ∐
x∈X(k) K

(
Chk (M (Xx)) ,Q

)

K
(
Chk+1 (V (X)) ,Q

)�

K
(
Chk (V (X)) ,Q

)� Φ ∐
x∈X(k) K

(
Chk (V (Xx)) ,Q

)�

Then, the vertical maps are homotopy equivalences of K-theory spectra. Further, if X is Cohen–Macaulay, 
then the second line and the third line are homotopy fibrations of K-theory spectra.

Proof. Here the middle upward arrow Φ : K 
(
Chk (V (X),Q)

)
→ K 

(
Chk (M(X),Q)

)
is induced by the 

functor ι′ :
(
Chk (V (X),Q)

)
→

(
Chk (M(X),Q)

)
of complicial exact categories with weak equivalences. 

By Theorem 3.4, ι′ induces an equivalence of the associated triangulated categories. Therefore, by [18, 
3.2.29] Φ is a homotopy equivalence. Likewise, other two upward arrows are homotopy equivalences.

The middle downward arrow Ψ is a composition of three maps, as follows:

K
(
CM

k(X)
)

Ψ

Ψ′

K

(
Chb

(
CM

k(X),Q
))

ζ′

K
(
Chk (M(X),Q)

)
K

(
Chb

(
M

k(X),Q
))

ι′

Now, ζ ′ and ι′ are induced by the corresponding functors of complicial exact categories, with weak equiva-
lences. Again, by [18, 3.2.29] in conjunction with Theorem 3.4, ζ ′ and ι′ are homotopy equivalences. Now, 
Ψ′ is a homotopy equivalence by the agreement theorem [18, 3.2.30]. Hence, so is Ψ.

It remains to show that, when X is Cohen–Macaulay, the third line is a homotopy fibrations of K-theory 
spectra. To do this, consider sequence of complicial exact categories with weak equivalences (not necessarily 
exact):

(
Chk+1 (V (X)) ,Q

) (
Chk (V (X)) ,Q

) ∐
x∈X(k)

(
Chk (V (Xx)) ,Q

)
(7)

By Lemma 4.1, the corresponding sequence of the derived categories is exact up to factor. Therefore, by 
an application of the non-connective version of the Thomason–Waldhausen localization theorem (see [18, 
3.2.27]) the third line in the statement of the theorem is a homotopy fibration of K-theory spectra. The 
proof is complete. �

The following is an immediate consequence of Theorem 4.2.

Corollary 4.3. Let X and k be as in Theorem 4.2. Assume X is Cohen–Macaulay. Then, for any integer n, 
there is an exact sequence of K-groups,
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· · · Kn

(
CM

k+1(X)
)

Kn

(
CM

k(X)
)

⊕x∈X(k)Kn

(
M

k(Xx)
)

Kn−1
(
CM

k+1(X)
)

· · ·

Proof. Follows from Theorem 4.2. The proof is complete. �
Remark 4.4. If X is regular, statements exactly similar to Theorem 4.2 and Corollary 4.3, respectively, 
for K-theory spaces and groups, would be valid. Regularity is used to apply the connective version of 
Thomason–Waldhausen Localization theorem [18, 3.2.23], which requires that the corresponding sequence 
of derived categories is exact.

Remark 4.5. Let X be as in Theorem 4.2. Assume X is Cohen–Macaulay. The following are some remarks.

1. The usual diagram to compute the Gersten complex, reduces to

⊕x∈X(k−1)Kn+1
(
CM

k−1(Xx)
)

Kn−1
(
CM

k+2(X)
)

Kn

(
CM

k(X)
)

⊕x∈X(k)Kn

(
CM

k(Xx)
)

Kn−1
(
CM

k+1(X)
)

Kn

(
CM

k−1(X)
)

⊕x∈X(k+1)Kn−1
(
CM

k+1(Xx)
)

The dashed diagonal arrows form the Gersten complex. This provides further insight regarding the 
Gersten complexes in terms of the groups Kn

(
CM

k(X)
)
. This complex is analogous to the G-theoretic 

Gersten complex in [16, Proposition 5.8]. These complexes are clearly non-isomorphic.
2. The spectral sequence given in [3] takes the following form:

Ep,q
1 =

⊕
x∈X(p)

K−p−q(CM
p(Xx)) =⇒ K−n(V (X)) along p + q = n.

4.2. Grothendieck–Witt theory

In this section, we develop a counter part of the results on K-theory (4.2), for Grothendieck–Witt theory. 
First, incorporating duality to the Theorem 3.4, we obtain the following.

Proposition 4.6. Let X be a noetherian quasi-projective scheme, over an affine scheme Spec (A), and k ≥ 0
be an integer. Then, there is a duality preserving equivalence Db

(
CM

k(X)
)
−→ T kDk ((V (X)) of the 

derived categories, where T denotes the shift, the duality on Db
(
CM

k(X)
)

is induced by Extk (−,OX) and 
that on T kDk ((V (X)) is # := T kHom (−,OX).

Proof. It is a standard fact that there is a functor M(X) −→ Db (V (X)), by resolution (e.g. see [11, 3.3]). 
The restriction to this functor to CM

k(X) extends to a functor Db
(
CM

k(X)
)
→ Dk ((V (X)). It turns out 

that this functor represents the composite functor in Theorem 3.4. Hence the functor is an equivalence. Now, 
routine checking establishes that this functor preserves the duality, as required. The proof is complete. �

For clarity, we point out the technical differences in the literature among the basics of K-theory, derived 
Witt theory and Grothendieck Witt theory. Recall that K-theory is available for complicial exact categories 
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with weak equivalences [18,22,23] and derived Witt theory was defined for triangulated categories with 
duality [1]. However, in [20], the Grothendieck Witt theory (GW ) was developed for dg categories with 
weak equivalences and duality. Further, note that GW -theory of dg categories encompasses Witt theory of 
the same [20, Proposition 6.3]. As was pointed out in the introduction, K-theory is invariant of equivalences 
of the associated triangulated categories, and when 2 is invertible, so are GW -theory and Witt theory. The 
primary reason why we cannot directly imitate the methods in K-theory (§4.1), for Grothendieck Witt 
theory is that the dg category corresponding to Chk(M(X)) does not have a natural duality structure. 
The remedy for this is obtained by embedding Chk(M(X)) in the dg category of Perfect complexes. The 
following are some notations and background.

Notations 4.7. We establish some notations as follows. Let X denote a noetherian scheme.

1. We will denote the category of quasi-coherent OX -modules by QCoh(X). Also, Ch(QCoh(X)) will 
denote the category of chain complexes of objects in QCoh(X) and D(QCoh(X)) will denote its derived 
category (see [18, A.3.2]).

2. Recall, that a complex F• ∈ Ch(QCoh(X)) is called perfect complex, if for all x ∈ X, there is an affine 
open neighborhood U and a quasi-isomorphism E• → (F•)|U , for some E• ∈ Chb(V (U)). This is equiva-
lent to saying E• is isomorphic to (F•)|U in the derived category D(QCoh(U)) (see [22, Lemma 2.2.9]).

3. Denote the category of perfect complexes of OX -modules by Perf (X) and its derived category by 
D(Perf (X)). In analogy to Notation 2.1(7), for integers k ≥ 0,⎧⎨⎩Perf k(X) :=

{
F• ∈ Perf (X) : ∀ i Hi (F•) ∈ Cohk(X)

}
DkPerf (X) :=

{
F• ∈ Db(Perf (X)) : ∀ i Hi (F•) ∈ Cohk(X)

}
would denote the full subcategory, of the respective categories, of such objects. Note, DkPerf (X) is the 
derived category of Perf k(X).

4. To avoid confusion, we will use prefix dg to denote the respective dg categories. So, dgPerf (X)
would denote the dg category whose objects are the same as those of Perf (X). Likewise, dgV (X), 
dgkV (X), dgCMk(X) will denote the dg categories whose objects are, respectively, the same as those
of Chb(V (X)), Chk(V (X)), Chb(CM

k(X)).
5. Throughout, we fix a minimal injective resolution I• of OX , as follows:

0 OX I0 I−1 I−2 · · · . Clearly, I• ∈ Perf (X).

For F• ∈ Perf (X), denote F∨ := Hom(F•, I•). For properties of such minimal resolutions and the 
nature of arguments, the readers are referred to [5] and [7].

The following addresses the duality aspect of dgPerf (X).

Lemma 4.8. Let X be a noetherian scheme. Let I• be as in Notation 4.7(5). Then, the association F• �→
F∨

• endows (dgPerf (X), Q) with a structure of a dg category with weak equivalences and duality, weak 
equivalences being the set of all quasi-isomorphism Q.

Proof. Consider OX as a complex, concentrated at degree zero. Since OX → I• is a quasi-isomorphism, 
I• ∈ Perf (X). Let F• ∈ Perf (X). So, there is an affine open subset U and a quasi-isomorphism E• → (F•)|U
for some E• ∈ Chb(V (U)). Then:

In D(QCoh(X)), Hom(E•,OU ) ∼ Hom(E•, (I•)|U ) Hom((F•)|U , (I•)|U )∼
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are bijections. Since Hom(E•, OU ) ∈ Chb(V (U)), it follows that F∨
• ∈ Perf (X). Also, for F• ∈ Perf (X), we 

check, F• → F∨∨
• is a quasi-isomorphism. As above, let U be affine and E• → (F•)|U be a quasi-isomorphism, 

where E• ∈ Chb(V (X)). Since, the question is local, we can assume that X = U . Consider the diagram

E• Hom (Hom (E ,OU ) ,OU )

F• F∨∨
•

Since, two vertical arrows and the top horizontal arrow are quasi-isomorphisms, so is the bottom horizontal 
arrow. Now, we show if f• : F• → G• is a quasi-isomorphism in Perf (X), so is f∨

• : G∨
• → F∨

• . Using 
similar arguments as above, we can assume that X is affine and f is a map in Chb(V (X)), in which case 
the assertion is obvious. The proof is complete. �

The following proposition on derived equivalences is derived from results in [22].

Proposition 4.9. Let X be noetherian separated scheme, with an ample family of line bundles and k ≥ 0 be 
an integer. Let I• be as in Notation 4.7(5). Then, Dk(V (X)) → DkPerf (X) is an equivalence of derived 
categories.

Proof. We have Db(V (X)) → D(Perf (X)) is an equivalence of derived categories ([22, Lemma 3.8], [18, 
Prop. 3.4.8]). Since Dk(V (X)) ↪→ Db(V (X)) and DkPerf (X) ↪→ D(Perf (X)) are full subcategories, the 
assertion follows. �

Of our particular interest would be the following equivalences of derived categories. Refer to [20] for 
definition of form functors.

Proposition 4.10. Suppose X is a quasi-projective scheme over an affine scheme Spec (A) and k ≥ 0 is an 
integer. Then:

1. The inclusion functor dgkV (X) ↪→ dgPerf k(X) is a duality preserving form functor (see [20, 1.12, 1.7], 
for definition), of pointed dg categories with weak equivalences and dualities, such that the associated 

functor of the triangulated categories T
(
dgkV (X)

)
↪→ T

(
dgPerf k(X)

)
is an equivalence.

2. The inclusion functor dgCM
k(X) ↪→ T k

(
dgPerf k(X)

)
is a duality preserving form functor, of pointed 

dg categories with weak equivalences and dualities, where T denotes the shift. Further, the associated 

functor of the triangulated categories T (dgCM
k(X)) → T

(
T k

(
dgPerf k(X)

))
is an equivalence.

Proof. Since T
(
dgkV (X)

)
= Dk(V (X)) and T

(
dgPerf k(X)

)
= Dk(Perf (X)), the latter part of (1) 

follows immediately from Proposition 4.9. The duality compatibility transformation is the obvious map 
Hom(F•, OX) → Hom(F•, I•), which is a weak equivalence. This establishes (1).

To prove (2), note that the duality on dgCM
k(X) is induced by the duality Extk (−,OX). For 

F• ∈ dg(CM
k(X)), let F̂• denote its dual. Note, T

(
dgCM

k(X)
)

= Db
(
CM

k(X)
)

and T
(
dgPerf k(X)

)
=

T kDk
(
Perf k(X)

)
. Now, it follows from (1) and Proposition 4.6, that T (dgCM

k(X)) →

T
(
T k

(
dgPerf k(X)

))
is an equivalence. For an object F ∈ CM

k(X), due to grade consideration it 
follows that ∀ j ≤ k− 1, Hom(F , Ij) = 0 (see [5, Prop. 3.2.9], [7, Theorem 1.15]). Therefore, for a complex 
F• ∈ dgCM

k(X), we have a bounded double complex:
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0 0 0

· · · Extk (Fn+1,OX) Extk (Fn,OX) Extk (Fn−1,OX) · · ·

· · · Hom (Fn+1, I−k) Hom (Fn, I−k) Homk (Fn−1, I−k) · · ·

· · · Hom
(
Fn+1, I−(k+1)

)
Hom

(
Fn, I−(k+1)

)
Homk

(
Fn−1, I−(k+1)

)
· · ·

· · · · · · · · ·

In this double complex, the vertical lines are exact. This gives a natural transformation ϕ : F̂• →
Hom (F•, I•) =: F∨

• , which is a weak equivalence. Now, it follows that ϕ defines a duality preserving 

transformation dgCM
k(X) → T k

(
dgPerf k(X)

)
. The proof is complete. �

The following useful diagram is analogous to the diagram in the Equivalence Theorem 3.4, in the context 
of dg categories with weak equivalences and dualities.

Corollary 4.11. Suppose X is a quasi-projective scheme over an affine scheme Spec (A), and k ≥ 0, r are 
integers. Consider the diagram

T−1dgCM
k+1(X) T kdgPerf k+1(X) T kdgk+1V (X)

dgCM
k(X) T kdgPerf k(X) T kdgkV (X)

(8)

In this diagram, all the arrows are form functors of dg categories with weak equivalence. Further, the horizon-
tal arrows induce equivalences of the associated triangulated categories and the right hand square commutes. 
Note that there is no natural vertical functor on the left side.

Proof. Follows from Proposition 4.10. �
Now we have the machinery to state our results on GW -theory. For background information regarding 

the definitions of GW-spectrum and GW -spectrum the readers are referred to Appendix A or [20].

Theorem 4.12. Suppose X is a quasi-projective scheme over an affine scheme Spec (A), with 1/2 ∈ A and 
k ≥ 0, r are integers. In the following, weak equivalences and dualities in the respective categories would be 
as in Proposition 4.10. Then, the maps in the following zig-zag sequences

GW[r] (dgCM
k(X)

) ζ
GW[k+r]

(
dgPerf k(X)

)
GW[k+r] (dgkV (X)

)Φ in Sp

GW [r] (dgCM
k(X)

)
ζ

GW [k+r]
(
dgPerf k(X)

)
GW [k+r] (dgk(V (X)

)
Φ

in BiSp

are stable homotopy equivalences in the respective categories.
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Proof. Follows directly from Proposition 4.10 and [20, Theorem 6.5], [20, Theorem 8.9]. The proof is com-
plete. �
Theorem 4.13. Suppose X, k, r are as in Theorem 4.12. Assume further that X is a Cohen–Macaulay 
scheme. Consider the following diagram of GW -spectra:

GW [−1+r] (dgCM
k+1(X)

)
GW [r] (dgCM

k(X)
) ∐

x∈X(k) GW [r] (dgCM
k (Xx)

)

GW [k+r]
(
dgPerf k+1(X)

)
GW [k]

(
dgPerf kX)

) ∐
x∈X(k) GW [k+r] (dgPerf (Xx))

GW [k+r] (dgk+1V (X)
)

GW [k+r] (dgkV (X)
) ∐

x∈X(k) GW [k+r] (dgkV (Xx)
)

In this diagram, all the vertical arrows are equivalences of homotopy Bispectra and the bottom sequence is a 
homotopy fibration of bispectra. Further, if X is regular then the corresponding statement for GW-spectra 
would be valid.

Proof. It follows directly from Theorem 4.12 that the vertical rows are equivalences. It remains to show that 
the bottom row is a fibration. This follows from the localization theorem [20, Thm 8.10] and Lemma 4.1. 
When X is regular, use the localization theorem [20, Thm 6.6]. The proof is complete. �
Remark 4.14. The following are some remarks:

1. As in Corollary 4.3, each shift r, corresponding to the fiber sequence in Theorem 4.13, an exact sequence 
of GW -groups would follow. Likewise, analogous to Remark 4.5, for each shift r, a spectral sequence of 
GW -groups would follow.

2. For a scheme X and a rank one locally free sheaf L, Hom(−, L) induces a duality on V (X). All of the 
above would be valid, with dualities induced by Hom(−, L), instead of Hom(−, OX).

3. For an exact category E with duality, Grothendieck–Witt space GW (E ) ∈ Top∗ and Grothendieck–Witt 
groups ∀ i ≥ 0 GW i(E ) := πi (GW (E )) were defined by Schlichting [21]. With X as in Theorem 4.12 and 
integers k ≥ 0, it follows from the Agreement theorem [21, Proposition 6], and [20, Proposition 5.6] that 
GW (CM

k(X)) is naturally equivalent to the infinite loop space Ω∞GW(dgCM
k(X)), of the spectra. 

In particular, ∀ i ≥ 0 GW i(CM
k(X)) ∼= GWi(dgCM

k(X)).

4.3. Derived Witt theory

In this subsection we comment on Witt theory. The following follows immediately.

Theorem 4.15. Let X, A and k be as in Proposition 4.6. Assume 1/2 ∈ A. Then, the maps of the shifted 
Witt groups W r

(
Db

(
CM

k(X)
))

→ W k+r
(
Dk ((V (X))

)
are isomorphisms, for all r ∈ Z. In particular, the 

maps {
W

(
CM

k(X)
)
→ W k+4r (Dk ((V (X))

)
W− (

CM
k(X)

)
→ W k+2+4r (Dk ((V (X))

)
are isomorphisms, for all r ∈ Z.
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Proof. The first isomorphism follows from Proposition 4.6 and [1, Theorem 6.2], because the quotient 
category would be trivial. By [4, Theorem 1.4], W

(
CM

k(X)
) ∼= W 4r (Db

(
CM

k(X)
))

and W− (
CM

k(X)
) ∼=

W 2+4r (Db
(
CM

k(X)
))

. By combining these, with the first isomorphism, the latter two isomorphisms are 
established. �

Due to non-availability of Thomason–Waldhausen [18, 3.2.27] type of localization theorems in derived 
Witt theory, for the statement of the following theorem, we would assume that X is regular.

Theorem 4.16. Let X be a quasi-projective regular scheme, over an affine scheme Spec (A), with 1/2 ∈ A, 
and k ≥ 0 be an integer. In this case, the sequence in Lemma 4.1 is exact. Now, the twelve term exact 
sequence in [1, Corollary 6.6], corresponding to the same exact sequence reduces to two five term exact 
sequences of Witt groups as follows:

0 W−1 (Db
(
CM

k+1(X)
))

W
(
CM

k(X)
)

⊕x∈X(k)W
(
M

k(Xx)
)

W
(
CM

k+1(X)
)

W 1 (Db
(
CM

k(X)
))

0

W 1 (CM
k+1(X)

)
W− (

CMk(X)
)

⊕x∈X(k)W− (
M

k(Xx)
)

W− (
CM

k+1(X)
)

W 3 (Db
(
CM

b(X)
))

0

Proof. Write down the twelve term exact sequence [1, Corollary 6.6] of Witt groups, corresponding 
to exact sequence of triangulated categories above. The zero term in the second row corresponds to 
⊕x∈X(k)W k+1(Xx) = 0 by [4]. Likewise, the first and the last zero are established. The rest follows by 
identifying the other terms by Corollary 4.15. �
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Appendix A. Background on GW-spectrum and GGGW -bispectrum

In this section, we include some background information on GW-spectrum and GW -bispectrum. In fact,
this is an overview from our primary source [20] on the same. Readers reluctant to deal with language of 
model categories may like to refer directly to formulas (9), (10).

Recall that for exact categories E and also for complicial exact categories E with weak equivalences the 
K-theory spaces K(E ) were defined as pointed topological spaces. Further, the K-theory spectra K(E ) were 
defined as Ω-spectra of topological spaces, which is a sequence of pointed topological spaces, with bonding 
maps (see [18, §A.1.8]). Likewise, for a pointed dg category A with weak equivalences and duality two 
invariants are defined in GW -theory, in [20], as follows.

Definition A.1. For a dg category A with weak equivalences and duality, the Grothendieck–Witt spectrum 
GW(A ) takes value in the category of symmetric spectra of pointed topological spaces. We only give some 
outlines of the definitions of symmetric spectrum (see [20, §B.1] for details) and of GW(A ) as follows.
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1. Let Σ denote the category, whose objects are n := {1, 2, . . . , n}, 0 = φ. The morphisms are: ∀ m 	= n

Mor(m, n) = φ and ∀ n Mor(n, n) =: Σn is the group of permutations elements in n.
The category of pointed topological spaces is denoted by Top∗. The smash product ∧ provides the 
category Top∗ a structure of a symmetric monoidal category. Also, denote S0 := {0, 1}, and S1 denotes 
the circle obtained by identifying 0 ∼ 1, in the unit interval [0, 1]. For n ∈ N, denote by Sn = S1∧· · ·∧S1, 
the n-fold smash product.

2. A symmetric spectrum is a functor Σ → Top∗ form Σ to the category Top∗, together with base point 
preserving maps ∀ n, m ∈ N en,m : Sn ∧ Xm → Xn+m, to be called the bonding maps, with further 
compatibility conditions. Therefore, a symmetric spectrum is a sequence X := {X0, X1, X2, . . .} of 
pointed topological spaces such that (1) ∀ n ∈ N, there is a continuous base point preserving left 
action of Σn on Xn, and (2) for n, m ∈ N, there are pointed continuous Σm × Σm-equivariant maps 
en,m : Sn ∧Xm → Xn+m with natural compatibility conditions.
The category of symmetric spectrum is denoted by Sp. The smash product ∧ of pointed topological 
spaces extends to a smash product on Sp, denoted by the same notation ∧. Further, four different model 
structures on Sp are discussed in [20, §B.2], namely, the (positive) projective level model structure 
and (positive) projective stable model structure. Two stable model structures on Sp have same weak 
equivalences and hence same homotopy category, to be called the stable homotopy category.
For X, Y ∈ Sp, let [X, Y ] denote the set of all morphisms X → Y in the stable homotopy category. 
Define the homotopy groups of X as

πn(X) := [Sn, X]

Our interest, with respect to GW -theory, would remain limited to the case when the spectrum is a 
(positive) Ω-spectrum, meaning that the bonding maps Xn → ΩXn+1 are weak equivalences of pointed 
topological spaces. In this case (see [20, §B.3]),

∀ n ∈ Z πn(X) = co lim
k

πn+k(Xk),

where πn+k(Xk) denote the usual homotopy groups.
3. For a pointed dg category A , the Grothendieck–Witt spectrum GW(A ) is defined as a symmetric 

spectrum [20, §4.4, Definition 5.4]

GW(A ) := {GW(A )0,GW(A )1,GW(A )2, . . .}.

Further, for n ∈ Z the n-shifted GW-spectrum is defined to be

GW[n](A ) := GW
(
A [n]

)
where A [n] denotes the n-shifted dg category of A .

In fact, GW(A ), is a positive Ω-spectrum [20, Theorem 5.5]. For n, i ∈ Z, denote

GW[n]
i (A ) := πi

(
GW[n](A )

)
= co lim

k
πn+k

(
GW[n](A )k

)
(9)

where the latter equality is a property of the positive Ω-spectra.

With respect to sequences (A0, w) −→ (A1, w) −→ (A2, w) of pointed dg categories with weak equiva-
lences and dualities, the GW-spectra behave well (see [20, Theorem 6.6]), when the associated sequence of 
triangulated categories is exact (assuming 2 is invertible). However, while dealing with non-regular schemes, 
as noted in Lemma 4.1, the relevant sequence of associated triangulated categories is exact only up to 
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factors. To remedy this situation, in analogy to K-theory spectra, Karoubi–Grothendieck–Witt spectrum 
GW (A ) of pointed dg categories A with weak equivalences and dualities are defined [20].

Definition A.2. For dg categories A with weak equivalences and dualities, the Karoubi–Grothendieck–Witt 
spectrum GW (A ) takes value in the category of Bispectra. Again, we only outline the definition of Bispectra 
and GW (A ) from [20].

1. Note that the category (Top∗, ∧, S0) of pointed topological spaces, with smash product ∧ is a symmetric 
monoidal category, where the unit is S0. The process used to obtain the category Sp from (Top∗, ∧, S0)
is fairly formal and is described in [20, §B.9], where S1 had a special role to play. The category of 
Bispectra is obtained, by iterating the same process on Sp, as follows.
(a) Denote S := {S0, S1, . . .} ∈ Sp. For X, Y ∈ Sp define a new smash product X∧S Y by push forward

X ∧ S ∧ Y
1X∧−

−∧1Y

X ∧ Y

X ∧ Y X ∧S Y

Then, (Sp, ∧S , S) is cofibrantly generated closed symmetric monoidal model category, with the 
positive stable model structure on Sp. By abuse of notations, write S1 := S ∧ (S1, pt, pt, . . .) =
(S1, S1 ∧ S1, S2 ∧ S1, · · · ). Also, let S̃1 denote a cofibrant replacement of S1 ∈ Sp.

(b) The process mentioned above [20, §B.9] is applied to this category (Sp, ∧S , S) with the special role 
played by S̃1 ∈ Sp (see [20, §B.11]). The category thus obtained is called category S̃1–S-bispectra, 
or simply the category of Bispectra, which is denoted by

BiSp := Sp(Sp, S̃1) := Sp
(
(Sp,∧S , S), S̃1)

We describe BiSp as follows (see [20, §B.11]):
i. Let SpΣ denote the category of functors Σ → Sp. So, an object in SpΣ is a sequence 

(X0, X1, X2, . . . , ) where Xn ∈ Sp are spectra, with a left action of the symmetric groups Σn.
ii. The smash product ∧S extends to a smash product ∧S in SpΣ.
iii. Write S̃ := (S0, S̃1, S̃1 ∧S S̃1, S̃1 ∧S S̃1 ∧S S̃1, . . .).
iv. The objects in BiSp are S̃-modules M ∈ SpΣ. This means that there is a map (natural trans-

formation) S̃ ∧M → M , compatible with the action of Σ.
v. The objects X ∈ BiSp are also called S̃1–S1-bispectrum, or simply a bispectrum.

(c) BiSp has a (positive) stable symmetric monoidal model structure (see [20, §B.9, B.11]), by results 
of Hovey [6]. For bispectra X , Y ∈ BiSp, let [X , Y]H(BiSp) denote the set of all morphisms X → Y
in this stable homotopy category. Define the homotopy groups of X as

πn(X ) := [S̃n,X ]H(BiSp)

If X = (X0, X1, X2, . . .) ∈ BiSp is a level fibrant semistable S̃1–S1-bispectrum, then [20, 
Lemma B.16]

πn(X ) := [S̃n,X ]H(BiSp) = co lim
k

(πn+k(Xk)) (10)

2. Suppose A is a pointed dg category with weak equivalence and duality. Let SnA denote the iterated 
n-fold suspension of A (see [20, §8.1]). Denote GW (A )n := GW(SnA ) ∈ Sp, the GW-spectrum of 
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SnA . Then, Σn has a left action on GW (A )n. The Karoubi–Grothendieck–Witt spectrum GW (A ) of 
A is defined as the S̃1–S1-bispectrum (see [20, §8.2])

GW (A ) := (GW (A )0,GW (A )1,GW (A )2, . . . ,GW (A )n, . . .) ∈ BiSp.

The Karoubi–Grothendieck–Witt spectrum is defined as a functor GW : dgCatWD∗ → BiSp from the 
category of pointed small dg categories with weak equivalences and dualities to the category of Bispectra. 
For n ∈ Z, the Karoubi–Grothendieck–Witt groups are defined as, and are isomorphic to

GWn(A ) := πn (GW (A )) ∼= co lim
k

πn+k (GW (A )k) ∼= co lim
k

πn+k

(
GW(SkA )

)
∼= co lim

k

(
co lim

m

(
πn+k+m

(
GW(SkA )

)
m

))
The latter isomorphisms follow because the formulas (9), (10) would apply. For n, i ∈ Z define the 
n-shifted Karoubi–Grothendieck Witt spectrum and groups, respectively, as

GW [n](A ) := GW
(
A [n]

)
and GW

[n]
i (A ) := πi

(
GW [n](A )

)
.
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