
Commutative Algebra and Algebraic K-Theory

Satya Mandal, University of Kansas

13-17 December 2016, at Indian Consortium, BHU, Banaras

Abstract: Before the work of Quillen (1972), Higher Algebraic K-Theory
was considered as a part of Commutative Algebra (Rings and Modules). In
this talk we would discuss this author’s recent efforts to bridge this artificial
(tantalizing) gap between Commutative Algebra and Algebraic K-Theory,
which developed during this last forty plus years. During the same period,
Algebraic K-Theory also has progressed a long distance. Advent of negative
K-theory is among the greatest milestones.

For some further flavor, assume X is a quasi projective scheme. Given
a chain complex map ν• : L• −→ G• between two complexes L•, G•, of
coherent (or locally free) sheaves on X, one complex can be viewed as an
approximation to the other. In general, constructing such approximations
would be challenging. In the affine case X = Spec(A), such a map was
constructed by Hans-Bjørn Foxby (unpublished), using Koszul complexes.
We implement this construction to quasi projective schemes. This can be
considered as a "graded version" of Foxby’s construction. The main point of
this talk is, how we apply this approximating tool to (negative) K-Theory
and Grothendieck Witt (GW )-Theory.
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1 The Morphism Construction

First, consider affine case.

Lemma 1.1. Let X = Spec(A) be an affine scheme.

Consider the following diagram

0 //Pn //Pn−1 // · · · //P1
//P0

//M
f
��

// 0

0 //Gn
//Gn−1 // · · · //G1

//G0
//N // 0

(1)

where f : M −→ N is a homomorphim of A-modules,

the first line is a projective resolution of M and the

second line is an exact sequence of A-modules. Then,

f extends to a map of complexes:

0 //Pn //

fn
��

Pn−1 //

fn−1
��

· · · //P1
//

f1
��

P0
//

f0
��

M
f
��

// 0

0 //Gn
//Gn−1 // · · · //G1

//G0
//N // 0

Perhaps, the second line of (1) is the target of our

interest, while the first line (or "some concoction")

approximates the second line.
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When the 2nd-line is not exact, H.-B. Foxby [F, FH]:

Lemma 1.2.

Let G• : 0 //Gn
//Gn−1 // · · · //G1

//G0
// · · ·

be a bounded complex of finitely generated A-modules.

Let f1, f2, . . . , fr ∈
⋂
i∈Z

Ann (Hi(G•)) be a sequence.

∀ n� 0, K• := K(fn1 , f
n
2 , . . . , f

n
r ) denote the Koszul complex.

For x ∈ H0(G•), let ζx : H0(K•) −→ H0(G•) denote the

map 1 7→ x. Then, there is a map of complexes

ϕx• : K• −→ G• 3 H0(ϕ•) = ζx.

If f1, . . . , fn is regular then, Hi(K•) = 0 ∀ i 6= 0.
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Taking direct sum of such Koszul complexes:

Theorem 1.3. Under the same set up as in (1.2): There

is a bounded complex P• of projective modules and a

map ϕ• : P• −→ G• of complexes, such that

1. H0(ϕ•) : H0(P•) � H0(G•) is surjective.

2. In fact, P• would be a direct sum of K•(fn1 , . . . , fnr ),

with n� 0.

3. Consequently, if f1, . . . , fr is regular, then P• is a

resolution of H0(P•) and

grade (H0(P•)) = proj dim (H0(P•)) = r

Proof. Follows from (1.2).

Corollary 1.4. Nothing prevents me from writing a

graded version of the same (1.3) and sheaffify.
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Lemma 1.5. Let X be a quasi projective scheme
over Spec(A). More precisely, S = ⊕i≥0Si is
a noetherian graded ring, with S0 = A, S =

A[S1] and Let X be an open subset of X̃ :=

Proj(S).

Let Y ⊆ X be a closed subset of X , with

grade(OY ,OX) ≥ r. Write V (I) = Y

be the closure of Y , where I is the homogeneous
ideal of S, defining Y . Then,

∃ f1, . . . , fr ∈ I 3 fi1, . . . , fij

induce regular S(℘)-sequences on X .

Proof. Simple prime avoidance methods.
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Corollary 1.6. With f1, . . . , fr ∈ I in lemma
1.5, we have the following:

1. First, we can form the Koszul complexes
K•(f

n
1 , . . . , f

n
r ) of graded modules.

2. By sheafification, we get the Koszul com-
plexes K•(fn1 , . . . , fnr ), which is in
Chb(Coh(V (X ))) ↪→ Chb(Coh(X )).

3. Its restriction K•(fn1 , . . . , fnr )|X , is in
Chb(Coh(V (X))) ↪→ Chb(Coh(X)).

In deed, K•(fn1 , . . . , fnr )|X is a resolution of
H0

(
K•(fn1 , . . . , fnr )|X

)
and

grade
(
H0

(
K•(∗)|X

))
= dimV (X)

(
H0

(
K•(∗)|X

))
= r

With such choices of homogeneous regular sequences

f1, . . . , fr and by sheafification of the graded version of

Foxby’s construction we get the following:
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Theorem 1.7. LetX be quasi-projective (Cohen-
Macaulay) scheme over Spec(A). Let G•:
Gk+1

//Gk ∂k
// · · · //Gr ∂r

//Gr−1 // · · · //G0 //G−1
be a complex of coherentOX-modules. Assume

∀ i ∈ Z, Yi := Supp(Hi(G•)), grade(OYi,OX) ≥ k

Then, ∃ L• : 0 //Lk // · · · //L0
// 0 a complex

of locally free sheaves and a morphism
ν• : L• −→ G•, of complexes, such that

1. H0(ν) : H0(L•) � H0(G•) is surjective.

2. L• is a locally free resolution of H0(L•).

3. And,

grade (H0(L•)) = dimV (X) (H0(L•)) = k

(2)
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1.1 Derived Equivalences

Using Theorem 1.7, we prove some results on Derived

equivalences, which has wide applications in K-Theory.

Notations 1.8. LetX will denote a noetherian
scheme, with dimX = d.

1. Use the usual notationsCoh(X), V (X) etc.
For integers k ≥ 0, denote

Cohk(X) := {F ∈ Coh(X) : grade (F ,OX) ≥ k}
M(X) := {F ∈ Coh(X) : dimV (X)(F) <∞}
Mk(X) := {F ∈M(X) : grade (F ,OX) ≥ k}
CMk(X) :=

{F ∈M(X) : grade (F ,OX) = dimV (X)(F) = k}
So, we have a filtrations ofM(X) = M0(X)

and Coh(X) = Coh0(X), as follows
M0(X) M1(X)_?

oo · · ·_?
oo Md(X)_?

oo 0_?oo

Coh0(X) Coh1(X)_?
oo · · ·_?

oo Cohd(X)_?
oo 0_?oo
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This would induce filtrations on other asso-
ciated categories.

2. The categories Coh(X), Mk(X), CMk(X)

are exact categories. For exact categories
E , the bounded derived category Db(E ) is
obtained as follows:

(a) The objects of Db(E ) is same as that of
the category Chb(E ) of bounded chain
complexes.

(b) Morphisms of Db(E ) are obtained by in-
verting the quasi-isomorphism inChb(E ).

3. For E = V (X),M(X), and integers k ≥ 0,{
Dk (E ) :=

{
F• ∈ Db (E ) : ∀ i Hi (F•) ∈ Cohk(X)

}
would denote the full subcategory of such
objects. (Note the difference between two
fonts D,D .)
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The Main Theorem on Derived Equivalences:

Theorem 1.9. LetX be a noetherian quasi-projective
scheme over an affine scheme Spec(A) and k ≥
0 be a fixed integer. Consider the commutative
diagram of functors of derived categories:

Db(CMk+1(X))
ζ
∼ //

α
��

Db(Mk+1(X)) ι
∼ //

β
��

Dk+1(M(X))
γ
��

Dk+1(V (X))
η
��

ι′
∼oo

Db(CMk(X))
ζ
∼ //Db(Mk(X)) ι

∼ //Dk(M(X)) Dk(V (X))
ι′
∼oo

(3)

Then, all the horizontal functors are equiva-
lences of derived categories and all the vertical
functors are fully faithful.
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2 Application of (1.9) to Negative K-theory

Theorem 1.9 applies toK-theory (and Grothendieck Witt

theory).

2.1 Background on K-theory

Suppose E is an exact category. The Quillen defined

the K-theory space through the following steps of con-

structions:

E 7→ QE 7→ B(QE) 7→ K(E) := Ω(B(QE))

where K(E) is a topological space and defined

∀ i ≥ 0 Ki(E) := πi(K(E)) = πi+1(BQ(E)).

Theorem 2.1 (Localization). Suppose

B � � //A // //C is an exact sequence of abelian categories

Then, the induced sequence

K (B) //K (A ) //K (C ) is a homotopy fibration.

Consequently, there is a long exact sequence

· · · //Kn (B) �
� //Kn (A ) // //Kn (C ) //Kn−1 (B) //
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Remark: Suppose X is a noetherian scheme, Y ⊆ X

is a closed sunset and U = X \ Y .

1. Theorem 2.1, is often applied for the sequence

Coh(Y ) //Coh(X) //Coh(U)

Consequently, we get a long exact sequence of G-

groups

· · · //Gn (Y ) �
� //Gn (X) // //Gn (U) //Gn−1 (Y ) //

2. A point is ,that it does not apply to the sequence

V (Y ) V (X) //V (U)

3. This justifies the place on negative K-Theory, also

known as non-connective K-Theory.
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2.2 Negative K-theory

Our standard reference for K-theory is Schlichting [S2].

1. K-Theory spectra was defined for exact categories

E , which is a sequence of topological spaces with

bonding maps.

2. K-Theory spectra was also defined for complicial

exact categories E with weak equivalences. We will

be thinking of (Chb(E ),Q), where Q denotes the

set of all quasi isomorphisms.

This is also known as negative K-theory or non-

connective K-theory.

3. For such a category, K(E ) will denote the K-theory

spectra of E and Ki(E ) will denote the K-groups.

Likewise, K(E ) would denote the K-theory space

of E (as was defined by Quillen).

I have a preference to state the non-connective ver-

sion of K-Theory, and skip the connective version

(K-Theory).
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Before stating the main application of (1.9) to K-

theory, we have the following notations:
Chk (V (X)) :=

{
F• ∈ Chb (V (X)) : ∀ i Hi (F•) ∈ Cohk(X)

}
Chk (M(X)) :=

{
F• ∈ Chb (M(X)) : ∀ i Hi (F•) ∈ Cohk(X)

}
Dk (V (X)) :=

{
F• ∈ Db (V (X)) : ∀ i Hi (F•) ∈ Cohk(X)

}
Dk (M(X)) :=

{
F• ∈ Db (M(X)) : ∀ i Hi (F•) ∈ Cohk(X)

}
{

Chk (V (X)) :=
(
Chk (V (X)) ,Q

)
Chk (M(X)) :=

(
Chk (M(X)) ,Q

) likewise, denote

the complicial exact categories with weak equivalences.

Also, For a noetherian scheme X , denote

X(k) := {Y ∈ X : co dim (Y ) = k} and Xx := Spec(OX,x).
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Theorem 2.2. Suppose X is a Cohen-Macaulay
quasi-projective scheme over an affine scheme
Spec(A) and k ≥ 0 is an integer. Consider the
diagram of K-theory spectra and maps:

K
(
CMk+1(X)

)
o
��

K
(
CMk(X)

)
o Ψ0

��

∐
x∈X(k) K

(
CMk (Xx)

)
o
��

K
(
Chb

(
CMk+1(X)

))
o
��

K
(
Chb

(
CMk(X)

))
o ζ
��

∐
x∈X(k) K

(
Chb

(
CMk (Xx)

))
o
��

K
(
Chb

(
Mk+1(X)

))
o
��

//K
(
Chb

(
Mk(X)

))
//

o ι
��

∐
x∈X(k) K

(
Chb

(
Mk (Xx)

))
o
��

K
(
Chk+1 (M(X))

)
//K
(
Chk (M(X))

)
//
∐

x∈X(k) K
(
Chk (M (Xx))

)
K
(
Chk+1 (V (X))

)
//

o
OO

K
(
Chk (V (X))

)
//

o ι′′
OO

∐
x∈X(k) K

(
Chk (V (Xx))

)o
OO

Then, the vertical maps are homotopy equiv-
alences of K-theory spectra. Further,the third,
fourth, fifth lines are homotopy fibrations of
K-theory spectra. In particular, the top line
is a zig-zag sequence of homotopy fibration of
K-theory spectra, of exact categories:

K
(
CMk+1(X)

)
//K
(
CMk(X)

)
//
∐

x∈X(k) K
(
CMk (Xx)

)
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Proof. Ψ0 is an equivalence by Agreement Theorem.

Other vertical maps are Homotopy equivalences because

of Theorem 1.9. The fifth line is equivalence because

for the following well know decomposition Lemma 2.3.

Hence so are hence third and fourth.

Lemma 2.3. Suppose X is a Cohen-Macaulay quasi-

projective scheme over an affine scheme Spec(A) and

k ≥ 0 is an integer. Then, the sequence of derived

categories

Dk+1 (V (X)) //Dk (V (X)) //
∐

x∈X(k)Dk (V (Xx))

is exact up to factor. If X is regular, this sequence is

exact.
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It is customary to write down the following K-theory

exact sequence, which is an immediate consequence of

(2.2).

Corollary 2.4. Let X and k be as in Theorem 2.2.
Assume X is Cohen-Macaulay. Then, for any integer
n, there is an exact sequence of K-groups,

· · · // Kn

(
CMk+1(X)

)
// Kn

(
CMk(X)

)
// ⊕x∈X(k)Kn

(
Mk(Xx)

)
// Kn−1

(
CMk+1(X)

)
// · · ·

Proof. Follows from Theorem 2.2. The proof is complete.

Remark 2.5. Let X be as in Theorem 2.2. Assume X

is Cohen-Macaulay. The following are some remarks.

The diagram to compute the Gersten complex, re-
duces to
⊕x∈X(k−1)Kn+1

(
CMk−1(Xx)

)
�� ++

Kn−1
(
CMk+2(X)

)
��

Kn

(
CMk(X)

)
//

��

⊕x∈X(k)Kn

(
CMk(Xx)

)
//

++

Kn−1
(
CMk+1(X)

)
��

Kn

(
CMk−1(X)

)
⊕x∈X(k+1)Kn−1

(
CMk+1(Xx)

)
The dotted diagonal arrows form the Gersten complex.
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The spectral sequence given in [B3] takes the follow-

ing form:

Ep,q
1 =

⊕
x∈X(p)

K−p−q(CMp(Xx)) =⇒ K−n(V (X)) along p+q = n.
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3 Grothendieck-Witt theory

To do Grothendieck-Witt theory, one needs to
incorporate dualities, to what is said above. We
refer back to the diagram 3, in Theorem 1.9.
The categories

Mk(X), Chb(Mk(X)), Db(Mk(X)), M(X), Dk(M(X)), · · ·

have NO natural duality,

However:
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Lemma 3.1. Let X be a noetherian scheme
and k ≥ 0.

1. Then, Chb(V (X)) and Dk(V (X)) have a
duality induced by Hom (−,OX).

2. F 7→ Extk (F ,OX)

is a duality on CMk(X).
It induces a duality on Chb(CMk(X)) and
Db
(
CMk(X)

)
.

3. There is no natural functor form
Chb(CMk(X)) to Chb(V (X)).
The functorDb(CMk(X))

∼−→ T kDk(V (X))

is a duality preserving equivalence.

This makes us go through the category Perf (X)

of perfect complexes, which has a duality
F• 7→ Hom (F•, I•) where I• is an injective
resolution of OX .
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The following is a diagram of equivalences,
analogous to the diagram in Theorem 1.9.

Corollary 3.2. SupposeX is a quasi-projective
scheme over an affine scheme Spec(A), and k ≥
0, r are integers. Consider the diagram

dgCMk(X) //T kdgPerf k(X) T kdgkV (X)oo

(4)
Intuitivey, think of:

Chb
(
CMk(X)

)
//T kPerf k(X) T kChk (V (X))oo

(5)
In this diagram, all the arrow are functors pre-
serving quasi isomorphisms and duality. Fur-
ther, the horizontal arrows induce equivalences
of the associated triangulated categories:

Db
(
CMk(X)

)
//T kDb

(
Perf k(X)

)
T kDk (V (X))oo

(6)
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Main Theorem in GW -Theorey:

Theorem 3.3. Suppose X be Cohen-Macaulay
quasi projective scheme, k, r are as above. As-
sume further thatX is a Cohen-Macaulay scheme.
Consider the following diagram of GW -Bispetra:

GW [−1+r]
(
dgCMk+1(X)

)
��

GW [r]
(
dgCMk(X)

)
��

∐
x∈X(k) GW [r]

(
dgCMk (Xx)

)
��

GW [k+r]
(
dgPerfk+1(X)

)
GW [k]

(
dgPerfkX)

) ∐
x∈X(k) GW [k+r] (dgPerf(Xx))

GW [k+r]
(
dgk+1V (X)

)
//

OO

GW [k+r]
(
dgkV (X)

)
//

OO

∐
x∈X(k) GW [k+r]

(
dgkV (Xx)

)
OO

In this diagram, all the vertical arrows are
equivalence of homotopy Bispectra and the bot-
tom sequence is a homotopy fibration of bispec-
tra. In particular, there is a sequence zig-zag
maps of Bispectra

GW [−1+r]
(
dgCMk+1(X)

)
// GW [r]

(
dgCMk(X)

)
//
∐
x∈X(k) GW [r]

(
dgCMk (Xx)

)
that is a homotopy fibration.
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