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Abstract. Suppose X = Spec(A) is a real smooth affine variety of
dimension n ≥ 2 and M is the manifold of real points of X. Assume X
is orientable and M is nonempty. In this paper, we prove that there is a
natural homomorphism ζ : E(A,A) → Hn(M, Z) from the Euler class
group to the singular cohomology group.

1. Introduction

The following is a classical theorem in obstruction theory in topology.

Theorem 1.1 (see theorem 12.5 in [9]). Let M be an orientable real mani-
fold of dimension n and E be an orientable real vector bundle of rank n on
M. Then E has a nowhere vanishing section if and only if the Euler class
e(E) = 0.

There is a lot of similarities between the study of vector bundles over real
manifolds M and the study of finitely generated projective modules over
noetherian commutative rings A. This is because there is an equivalence (see
[15,16]) between the category of vector bundles over a finite dimensional con-
nected paracompact space M (resp. category of algebraic vector bundles over
Spec(A)) and the category of finitely generated projective modules over the
ring C(M) of real valued continuous functions on M (resp. over A). The
correspondance is given by E → P (E) where E is a vector bundle over M
(resp. an algebraic vector bundle over Spec(A)) and P (E) is the module of
sections of E .

More often than not, progress in topology has guided a lot of research in
projective modules. The obstruction theory in topology is well developed,
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beautiful and is classical. Advent of obstruction theory in algebra is a more
recent development. After the work of Mohan Kumar and Murthy ([11,10,12])
on obstruction theory for affine varieties over algebraically closed fields, Nori
(see [7]) outlined a program for obstruction theory for smooth affine varie-
ties Spec(A) over infinite fields. This program of Nori flourished beyond all
expectations at the time when it was introduced in early nineties ([7]).

While the program of Nori flourished, attempts have often been to mimick
the results in topology. This is unavoidable when we work on abstract affine
algebraic varieties. For real smooth algebraic varieties, it begs the question
whether we can reconcile the obstruction theory in algebra and topology.
In particular, whether there is a natural homomorphism from the obstruction
groups in algebra to the obstruction groups in topology. In this paper, we
address this issue for oriented smooth real affine varieties X = Spec(A) and
oriented vector bundles V over X with rank (V ) = dimX = n ≥ 2.

We refer to ([2]) for basic definitions and other facts on obstruction theory
in algebra. The obstruction groups in algebra are commonly known as Euler
class groups. Given a noetherian commutative ring A with dimA = n ≥
2, and a projective A-module L of rank one, there is a Euler class group
E(A,L) defined. Also, for a projective A−module P of rank (P ) = n with
determinant L and for an isomorphism (orientation) χ : L ∼→ ∧nP there is
an Euler class e(P,χ) ∈ E(A,L) defined.

Let X = Spec(A) be an oriented real smooth affine variety with dimX =
n ≥ 2 and M be the manifold of real points of X. Assume M is nonempty.
Also let R(X) = S−1A, where S is the multiplicative set of all f ∈ A
that do not vanish at any real point of X. In this paper, we define a natural
isomorphism

ζ : E(R(X),R(X)) ∼→ Hn(M,Z)

whereHn(M,Z) is the singular cohomology group ofM with Z coefficients.
Now suppose P is a projective R(X)−module of rank n with trivial determi-
nant and χ : R(X) ∼→ ∧nP is an orientation. Let V = V (P ) be the vector
bundle over M whose module of sections is given by P ⊗ C(M). Then, we
prove that Euler classes agree, i.e. ζ(e(P,χ)) = e(V ∗, χ′) where e denotes
the Euler class (algebraic or topological) and χ′ is the orientation induced
by χ.

In a subsequent paper ([8]), we address the case of nonorientable situation
and reconcile the obstruction theories in algebra and topology for the general
case, by defining similar natural isomorphsms between obstruction groups.

We thank Madhav V. Nori for many helpful discussions and general guid-
ance. Thanks are also due to Mohan Ramachandran for providing valuable
references.
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2. Preliminaries

In this section, we recall some definitions and notations and also give some
preliminaries from topology. For the benefit of the readers, we recall the
following version (see [2]) of the definition of the Euler class groups.

Definition 2.1. LetA = S−1B be a localization of smooth affine algebraB
over a field k, with dimA = dimB = n ≥ 2. We assume that char(k) = 0
and all maximal ideals of A has height n. Let L be a projective module of
rank one.

1. Let G be the free abelian group generated by the set of all pairs (m,ω),
where m is a maximal ideal of A and ω : L/mL ∼→ ∧nm/m2 is an
isomorphism. Let I = m1 ∩ · · · ∩mr be an intersection of finitely many
maximum ideals and ωI : L/IL ∼→ ∧nI/I2 be an isomorphism. Such an
ωI is called a local orientation on I. Let (I, ωI) :=

∑r

i=1(mi, ωi) ∈ G,
where ωi is the local orientation on mi induced by ωI . Such an element
(I, ωI) is called global, if it is induced by a surjective homomorphism f :
L⊕An−1 � I. Let H be the subgroup of G generated by global elements
(I, ωI) of G. Define Euler class group of A relative to L as E(A,L) :=
G/H. (The image of (I, ω) in E(A,L) will also be denoted by the same
notation.)

2. Now let P be a projective A−module of rank n and detP = L. Let
χ : L ∼→ ∧nP be an isomorphism (orientation). Suppose f : P � I is
a surjective homomorphism, where I = m1 ∩ · · · ∩mr is intersection of
finitely many maximum ideals. Let ϕ : ∧n(P/IP ) ∼→ ∧n(I/I2) be the
isomorphism induced by f. Define the Euler class e(P,χ) = (I, ϕχ) ∈
E(A,L).

3. We comment that in our case of localizations of smooth affine rings A as
above, these definitions are equivalent to those in ([2]). This is because,
Swan’s Bertini theorem remains valid for such rings (see [2, Remark 4.7]).

4. We also comment that the conjecture of Nori that P has an unimodular
element if and only if e(P,χ) = 0, was proved by Bhatwadekar and
Sridharan ([2]).

We include the following standard notations that will be useful for our sub-
sequent discussions.

Notation 2.2.

1. For a noetherian commutative ringA andX = Spec(A), the Grothendieck
group of finitely generated projective A−modules will be denoted by
K0(A) or K0(X) and the Chow group of zero cycles of X modulo ratio-
nal equivalence will be denoted by CH0(A) or CH0(X).
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2. Suppose X is a smooth real manifold with dimX = n. Then Hr(X,R),
Hr(X,R) would, respectively, denote the singular homology and coho-
mology group with R−coefficients. Assume X is oriented and let (V, χ)
be an oriented vector bundle overX of rank r. Then, e(V, χ) ∈ Hr(X,Z)
will denote the Euler class of (V, χ) (see [9]). Note that we use the same
notation e for Euler classes in both algebraic context and topological
context. Also, KO(X) will denote the Grothendieck group of real vector
bundles over X.

2.1 Local index

In this subsection we would recall the definition of local index from topology.
First, we recall the definition of degree of the continuous maps of spheres.

Definition 2.3. Suppose f : S
n → S

n, n ≥ 1 is a continuous function.
Then f induces an endomorphism

Hn(f) : Hn(Sn,Z) ∼= Z → Hn(Sn,Z) ∼= Z

of the homology group Hn(Sn,Z). The degree of f is defined as

deg(f) = Hn(f)(1) ∈ Z.

Clearly deg(idSn) = 1. From ([5, 16.1]), we also have deg(ρ|Sn) = −1, for
the reflection map ρ(x0, x1, x2, . . . , xn) := (−x0, x1, x2, . . . , xn).

The following is a lemma from elementary topology.

Lemma 2.4. Suppose ϕ : R
n+1 → R

n+1 is a linear isomorphism and

ϕ

‖ϕ‖
∣
∣
∣
∣
Sn

: S
n → S

n

is the restriction of the normalized ϕ, then we have

deg
(

ϕ

‖ϕ‖
∣
∣
∣
∣
Sn

)

=
det(ϕ)
|det(ϕ)| = ±1

the sign of det(ϕ).

Proof. Indeed, recall that the group manifold GLn+1(R) is the union of
two path-connected components det−1(0,∞) and det−1(−∞, 0) and hence
ϕ0, ϕ1 ∈ GLn+1(R) are connected by a (continuous) path in GLn+1(R)
if and only if det(ϕ0) and det(ϕ1) are of the same ±-sign. Note that if
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ϕ0, ϕ1 ∈ GLn+1(R) are connected by a path ϕt ∈ GLn+1(R) continuous in
t ∈ [0, 1], then

t �→ ft :=
ϕt

‖ϕt‖
∣
∣
∣
∣
Sn

is a homotopy from ϕ0
‖ϕ0‖

∣
∣
Sn to ϕ1

‖ϕ1‖
∣
∣
Sn via continuous functions ft :

S
n → S

n, and hence Hn

(
ϕ0

‖ϕ0‖
∣
∣
Sn

)
= Hn

(
ϕ1

‖ϕ1‖
∣
∣
Sn

)
, which implies

deg
(
ϕ0

‖ϕ0‖
∣
∣
Sn

)
= deg

(
ϕ1

‖ϕ1‖
∣
∣
Sn

)
. For ϕ ∈ GLn+1(R) with det(ϕ) > 0, we

have ϕ and id in the same path connected component of GLn+1(R), and
hence

deg
(

ϕ

‖ϕ‖
∣
∣
∣
∣
Sn

)

= deg
(

id
‖id‖

∣
∣
∣
∣
Sn

)

= deg(idSn) = 1.

For ϕ ∈ GLn+1(R) with det(ϕ) < 0, we have ϕ and ρ in the same path
connected component of GLn+1(R) and hence

deg
(

ϕ

‖ϕ‖
∣
∣
∣
∣
Sn

)

= deg
(

ρ

‖ρ‖
∣
∣
∣
∣
Sn

)

= deg(ρ|Sn) = −1.

Thus we have deg
(
ϕ

‖ϕ‖
∣
∣
Sn

)
equal to the sign of det(ϕ) for any ϕ ∈

GLn+1(R). The proof is complete. �

From ([6, Section 8.9]), we may take the following definition of local index,
which turns out to be independent of the choice of local parametrizations used.

Definition 2.5. Let B be a smooth oriented manifold of dimension n. Let
v ∈ B be a point and V be an open neighborhood of v. Suppose

f = (f1, . . . , fn) : V → R
n

is an ordered n-tuple of smooth functions such that f has an isolated zero at v.
Now fix a parametrization ϕ : R

n ∼→ U, compatible with the orientation ofB,
where U ⊆ V is a neighbourhood of v = ϕ(0). By modifying ϕ, we assume
that fϕ vanishes only at the origin 0 ∈ R

n. Define index jv(f1, . . . , fn) to
be the degree of the map

η

‖ η ‖ : S
n−1 → S

n−1 where η = (fϕ)|Sn−1 .

In this paper, we utilize the index of local diffeomorphisms, and the next
lemma summarizes what we need.

Lemma 2.6. Let v ∈ B, f : V → R
n, ϕ : R

n ∼→ U be as in (2.5) with
dimB = n ≥ 2. Further assume f is a diffeomorphism onto an open set
f(V ) ⊂ R

n. Then

jv(f) = deg
(

D(fϕ)(0)
‖D(fϕ)(0)‖

∣
∣
∣
∣
Sn−1

)

=
det(D(fϕ)(0))
|det(D(fϕ)(0))| = ±1
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where D(fϕ)(0) denotes the total derivative of the composite function
fϕ at 0.

Proof. The last two equalities follow directly from lemma 2.4 and so we prove
the first equality only.

To simplify the notations used, we replace f by fϕ and assume V = R
n

with v = 0. Then it remains to show that

deg
(

f

‖f‖
∣
∣
∣
∣
Sn−1

)

= deg
(

Df(0)
‖Df(0)‖

∣
∣
∣
∣
Sn−1

)

.

Note that Df(0) ∈ GLn(R) and hence

‖Df(0)x‖ ≥ δ‖x‖
for all x ∈ R

n for some constant δ > 0. Since f has the Taylor expansion

f(x) = Df(0)x+O(‖x‖2)

at 0, there is ε > 0 such that for all x ∈ εSn−1,

‖f(x) −Df(0)x‖ = O(‖x‖2) < δ‖x‖ ≤ ‖Df(0)x‖
and hence

ft(x) := Df(0)x+ t(f(x) −Df(0)x) �= 0

for all t ∈ [0, 1]. So f |εSn−1 = f1|εSn−1 is homotopic to Df(0)|εSn−1 =
f0|εSn−1 via continuous maps ft|εSn−1 : εSn−1 → R

n\{0}. On the other hand
with 1, ε ∈ (0,∞), it is clear that f |Sn−1 is homotopic to fψ|Sn−1 = f |εSn−1ψ
as continuous functions from S

n−1 to R
n\{0}, where ψ : x ∈ S

n−1 �→ εx ∈
εSn−1.

So we get

deg
(

f

‖f‖
∣
∣
∣
∣
Sn−1

)

= deg
(

fψ

‖fψ‖
∣
∣
∣
∣
Sn−1

)

= deg
(

Df(0)ψ
‖Df(0)ψ‖

∣
∣
∣
∣
Sn−1

)

= deg
(

εDf(0)
‖εDf(0)‖

∣
∣
∣
∣
Sn−1

)

= deg
(

Df(0)
‖Df(0)‖

∣
∣
∣
∣
Sn−1

)

.

The proof is complete. �

We state the following theorem that computes the Euler class of a
vector bundle in terms of indices of sections of the vector bundle (see [6, §9.9,
Theorem 3]).

Theorem 2.7. Let B be a smooth compact connected oriented manifold of
dimension n ≥ 2and ξ : E → B be an oriented vector bundle on B of rank
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n. Fix an orientation χ : B × R
∼→ ∧nE. Let σ : B → E be a smooth

cross section with isolated zeros v1, . . . , vk ∈ B and be transversal to the
zero section of E.

For each vi, we fix a local trivialization ψi : E|Ui

∼→ Ui × R
n of E on an

open neighborhood Ui of vi such that ψi is compatible with the orientation
χ of E and vi is the only zero of σ in Ui. Defining σi := (ψi)2σ|Ui

, where
(ψi)2 : E|Ui

→ R
n is the second component function of ψ, we get the Euler

class

e(E,χ) = j(σ) :=
k∑

i=1

jvi
(σi) ∈ Z ∼= Hn(B,Z).

3. Main results

Now we state our main theorem that defines a natural homomorphism from
algebraic to topological obstruction groups, in the oriented case.

Theorem 3.1. Suppose X = Spec(A) is a smooth affine variety over the
reals R with dimA = n ≥ 2. Let X(R) be the set of all real maximal ideals
of A and M be the smooth manifold of real points in X. Write R(X) =
S−1A, where S is the multiplicative set of f ∈ A that do not vanish onX(R).
We assume X(R) �= φ and X is oriented (i.e. ∧nΩA/R ≈ A).

1. Let m ∈ Spec(R(X)) be a maximal ideal and v ∈ M be the real
point corresponding to m. Given a local orientation ω : R(X)/m ∼→
∧nm/m2, we can represent ω = f1 ∧ · · · ∧ fn, where f1, . . . , fn ∈ m
generate m/m2. Using (2.5), define j(m,ω) = jv(f1, . . . , fn). Then, the
definition of j(m,ω) is independent of f1, . . . , fn. Further j(m,ω) =
±1.

2. Let C1, . . . , Cr be the compact connected components of M. The associa-
tion (m,ω) → j(m,ω) ∈ Hn(Ci,Z) = Z, for m corresponding to
points in Ci, and (m,ω) → 0 otherwise, induces a homomorphism

ζ : E(R(X),R(X)) → Hn(M,Z).

3. In fact, ζ is an isomorphism.
4. Suppose P is a projective R(X)-module of rank n with trivial determinant

and χ : R(X) ∼→ ∧nP is an orientation. Let V (P ) be the corresponding
real vector bundle onM, whose module of sections is given by P⊗C(M).
Then ζ(e(P,χ)) = e(V (P )∗, χ′), where χ′ denotes the orientation on
V (P )∗ induced by χ.

Proof. Let (m,ω) be a local orientation and v ∈ M be the point of m. Let
ω = f1∧· · ·∧fn = g1∧· · ·∧gn,where fi, gi ∈ m are two sets of generators
of m/m2.
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So, in a neighborhood D(s), where s ∈ 1 +m2, we have







f1

f2

· · ·
fn





 =







a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann













g1

g2

· · ·
gn





 where aij ∈ R(X)s.

We write α = (aij). We have, the diagram

Rn
s

α

��

(f) �� �� ms

Rn
s

(g)

�� ����������
reduces to

(R/m)n

α

��

∼
(f) �� m/m2

(R/m)n

∼
(g)

�����������
.

Taking nth−exterior ∧n we have det(α) = 1 +H where H ∈ mRs.
Now take neighborhood U of v and a smooth paramatrization φ : R

n ∼→ U
with φ(0) = v that is compatible with the orientation of M. Let us compute
the Jacobian matrices J(fφ), J(gφ). We denote the coordinate functions of
R
n by x1, x2, . . . , xn and we have

∂(fiφ)
∂xj

=
n∑

k=1

∂((aikφ)(gkφ))
∂xj

=
n∑

k=1

(aikφ)
∂(gkφ)
∂xj

+
n∑

k=1

∂(aikφ)
∂xj

(gkφ).

So,

J(fφ) = βJ(gφ) +B where β = (aikφ) and

B =

(
n∑

k=1

∂(aikφ)
∂xj

(gkφ)

)

.

Evaluating at 0, we have J(fφ)(0) = β(0)(J(gφ)(0)) and detβ(0) =
detα(v) = 1. Now we prove that j(m,ω) is independent of (f) or (g) :

1. Write ϕ = J(fφ), γ = J(gφ). Then

(fφ(x)) = ϕ(0)x +O(‖ x ‖2), (gφ(x)) = γ(0)x+O(‖ x ‖2)

Also

β(x) = β(0) +O(‖ x ‖).
2. Combining, we have

fφ(x) = β(0)γ(0)x +O(‖ x ‖2).
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3. Since detβ(0) = 1, by Lemma 2.6, we have

jv(f) =
detϕ(0)
|detϕ(0)| =

det γ(0)
|det γ(0)| = jv(g).

So, j(m,ω) is independent of f1, . . . , fn and j(m,ω) = detϕ(0)

| detϕ(0)| = ±1.
This establishes (1) of the theorem.

Now we prove (2). Let f : R(X)n � J be a surjective map, where J =
m1 ∩ · · · ∩ mk is intersection of distinct maximal ideals of R(X). Let ωi
denote the local orientation on mi, induced by f. We need to prove

η =
k∑

i=1

j(mi, ωi) = 0.

But f is a section of the trivial bundle T overM of rank n. Let χ : M×R
∼→

∧nT be the obvious orientation. By applying (2.7), to connected components
of M we see that η = e(T, χ) = 0 (see [9]). So, (2) is established.

It follows from the structure theorem ([1] or see [3, Theorem 4.21]) that
E(R(X),R(X)) = Z

r. It is well konwn that for the compact components
Ci, we have Hn(Ci,Z) = Z. For noncompact components C of M, also
is well known (see [14, Theorem 2.2]) that Hn(C,Z) = 0. Therefore,
Hn(M,Z) = Z

r. So, (3) follows because j(m,ω) = ±1, by (1).
We have E(R(X),R(X)) = Z

r = ⊕r
i=1Zεi, where εi is the generator

of Z
r corresponding to the compact connected components Ci. Suppose

e(P,χ) = (n1, . . . , nr) ∈ Z
r. Let pi =| ni | . Pick distinct points

vi1, . . . , vipi
∈ Ci and let mik ⊆ R(X) be the maximal ideal of vik. (Note,

if pi = 0, the subsequent argument works vacuously. Alternately, we could
work with two distinct points with opposite orientations.) We can attach local
orientations ωik on mik such that (mik, ωik) = ±εi in E(R(X),R(X)),
according as ni > 0 or ni < 0. Therefore, e(P,χ) = (I, ω) =

∑
(mik, ωik)

where I = ∩ikmik and ω is obtained from ωik. By ([2, Cor. 4.3]), there is a
surjective map σ : P � I such that the diagram

P
σ �� ��

��

I

��
P/IP �� I/I2

F/IF

ψ

��

η

����������
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commutes for some ψ, where F = R(X)n, detψ = χ. and det η = ω.
We have,

ζ(e(P,χ)) =
∑

ζ(mik, ωik) =
∑

i

(
∑

k

j(mik, ωik)εi

)

.

Now σ is a section of V (P )∗ transversal to the zero section and by (2.7),

e(V (P )∗|Ci
, χi) =

∑

j

j(mik, ωik)εi,

where χi is the orientation of V (P )∗|Ci
induced by χ′. Therefore,

ζ(E(P,χ)) = e(V (P )∗, χ′). This complete the proof of (4) and the theorem.
�

Corollary 3.2. With notations as in (3.1), there is an isomorphism ζ0 :
CH0(R(X)) ∼→ Hn(M,Z/(2)), such that the diagram

E(R(X),R(X))
ζ ��

ε

��

Hn(M,Z)

ε′

��
CH0(R(X))

ζ0 �� Hn(M,Z/(2)).

commutes, where ε, ε′ are the natural homomorphism.

Proof. As in the proof of (3.1), let C1, . . . , Cr be the connected compact
components of M. We have E(R(X),R(X)) = Z

r. Also by structure
theorem for Chow groups, we have CH0(R(X)) = (Z/(2))r (use [4] or
[1, 4.10]). As in the proof of theorem 3.1, we have Hn(M,Z) = Z

r and
Hn(M,Z/(2)) = (Z/(2))r . The composition map

ε′ζ : E(R(X),R(X)) → Hn(M,Z/(2)))

is surjective and kernel(ε′ζ) = 2Z
r. Therefore, ε′ζ factors through an iso-

morphism ζ0 : CH0(R(X)) ∼→ Hn(X(R),Z/(2)). This completes the
proof. �

Corollary 3.3. We continue to use the notations as in (3.1). Assume that the
Picard group Pic(A) = 0. Then, the following diagram

K0(A) ��

C0

��

K0(R(X)) ��

C0

��

KO(M)

wn

��
CH0(A) �� CH0(R(X))

ζ0 �� Hn(M,Z/(2))

commutes, whereC0 denotes the top (i.e nth) Chern class homomorphism and
wn denotes the top Stiefel-Whitney class homomorphism.
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Proof. The first rectangle in the diagram obviously commutes. Also, any ele-
ment τ ∈ K̃0(R(X)) can be written as τ = [P ] − [R(X)n], where P is a
projective R(X)−module of rank n. Since Pic(A) = 0, we can fix an orien-
tation χ : R(X) ∼→ ∧nP. Let V = V (P ) be the vector bundle on M, whose
module of sections is given by P ⊗ C(M) and χ′ be the orientation of V
induced by χ. By (3.1), ζ(e(P ∗, (χ∗)−1)) = e(V, χ′). By (3.2), we have the
commutative diagram

E(R(X),R(X))
ζ ��

ε

��

Hn(M,Z)

ε′

��
CH0(R(X))

ζ0 �� Hn(M,Z/(2)).

We use the usual convention and note that the top Chern class of P is given by
a generic section f : P ∗ � J (see [12, Remark 3.6]). Now (See [9, Property
9.5]),

ζ0C0(τ) = ζ0(C0(P )) = ζ0(ε(e(P ∗, (χ∗)−1)))
= ε′(ζ(e(P ∗, (χ∗)−1))) = ε′e(V, χ′) = wn(V ).

The proof is complete. �

Remark 3.4. In Corollary 3.3, we can drop the condition Pic(A) = 0, by
replacing K0(A) by F 2K0(A) and K0(R(X)) by F 2K0(R(X)), where for
a connected commutative ring R, F 2K0(R) denotes the subgroup of τ ∈
K0(R) with rank(τ) = 0 and det(τ) = 1.
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