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a b s t r a c t

Let A be a noetherian commutative ring of dimension d and L be a rank one projective
A-module. For 1 ≤ r ≤ d,we define obstruction groups Er (A, L). This extends the original
definition due to Nori, in the case r = d. These groups would be called Euler class groups.
In analogy to intersection theory in algebraic geometry, we define a product (intersection)
Er (A, A) × Es(A, A) → Er+s(A, A). For a projective A-module Q of rank n ≤ d, with an
orientation χ : L

∼
→∧

n Q ,we define a Chern class like homomorphism

w(Q , χ) : Ed−n(A, L′)→ Ed(A, LL′),

where L′ is another rank one projective A-module.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In topology, there is a classical obstruction theory for vector bundles (See [13]). The germ of the obstruction theory
in algebra was given by Nori, around 1990 [6,10]. For a smooth affine variety X = Spec(A) over an infinite field k, with
dim A = d ≥ 2, Nori outlined a definition of an obstruction group E(A). Further, for a projective A-module P of rank d,with
an orientation (isomorphism) χ : A

∼
→∧

dP, Nori outlined a definition of an obstruction class e(P, χ) ∈ E(A).
The definition of Nori was later extended by Bhatwadekar and Sridharan [2]. Given a noetherian commutative ring Awith

dim A = d ≥ 2 and a rank one projective A-module L, they defined an obstruction group E(A, L). In addition, ifQ ⊆ A, given
a projective A-module P of rank d and an orientation χ : L

∼
→∧

dP, they defined an obstruction class e(P, χ) ∈ E(A, L). They
proved that P ≈ Q ⊕ A if and only if e(P, χ) = 0. Surpassing all expectations, a solid body of work has been accomplished
regarding the obstructions for projective A-modules P with rank(P) = d = dim A. Among them are [6,10,1,2,4,8,9].
The theory in topology is much advanced and complete. For a real smooth manifold M with dimM = d and a vector

bundle V of rank r ≤ d, there is an obstruction group and an obstruction class (calledWhitney class)w(V ) in the obstruction
group. If V has a nowhere vanishing section, then w(V ) = 0. In case rank(V ) = r = d, V has a nowhere vanishing section
if and only ifw(V ) = 0.
Obstruction theory in algebra remains incomplete in this respect. At this time, barring [3], the theory is confined to

the case when rank(P) = d = dim A. Further, the intersection theory (see [5]) in algebraic geometry has also been fairly
advanced and complete. Because of such an advanced status of these two theories, there has been expectations that the
obstruction theory in algebra would have a similar advanced counter part. In this paper, we try to establish a foundation for
a theory of algebraic obstructions, in analogy to the aforementioned theories in topology and algebraic geometry.
Given a commutative noetherian ring A of dimension d and a rank one projective A-module L, in this paper we give a

definition of obstruction groups Er(A, L), for r ≥ 1. These groups will be called Euler class groups. The obstruction group

∗ Corresponding author.
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E(A, L) mentioned above would be same as Ed(A, L). Now, suppose Q is a projective A-module with rank(Q ) = n and an
orientation (isomorphism) χ : L

∼
→∧

nQ . In [5], the top Chern class was defined as a homomorphism of degree n. In the
same spirit, if n ≤ d− 2 and L′ is another projective A-module of rank one, we define a Whitney class homomorphism

w(Q , χ) : Ed−n(A, L′)→ Ed(A, L′L).

In case rank(Q ) = n = d− 1, the same homomorphism is defined for L′ = A. This homomorphism is compatible with the
top Chern class homomorphism of Q . For r ≥ 2, s ≥ 1,we also define bilinear maps (intersection):

∩ : Er(A, L)× Es(A, A)→ Er+s(A, L).

For r = 1, the same is defined with L = A.

2. Euler class groups

In this section we define general Euler (obstruction) class groups of commutative noetherian rings.

Definition 2.1. Let A be a commutative noetherian ring with dim A = d and L be a rank one projective A-module. We write
Fr = L⊕ Ar−1.
For an A-moduleM, the group of transvections ofM will be denoted by E l(M) (see [7] for a definition).

1. A local L-orientation is a pair (I, ω), where I is an ideal of A of height r and ω is an equivalence class of surjective
homomorphisms ω : Fr/IFr � I/I2. The equivalence is defined by E l(Fr/IFr)-maps. Sometimes, we will simply say
that ω is a local L-orientation, to mean that (I, ω) is a local L-orientation. By abuse of notations, we sometimes denote
the equivalence class of ω, by ω.

2. Let Lr(A, L) denote the set of all pairs (I, ω), where I is an ideal of height r, such that Spec(A/I) is connected and
ω : Fr/IFr � I/I2 is a local L-orientation.
Similarly, letLr0(A, L) denote the set of all ideals I of height r, such that Spec(A/I) is connected and there is a surjective
homomorphism Fr/IFr � I/I2.

3. Let Gr(A, L) denote the free abelian group generated byLr(A, L) and Gr0(A, L) denote the free abelian group generated by
Lr0(A, L).

4. Suppose I is an ideal of height r and ω : Fr/IFr � I/I2 is a local L-orientation. By [3], there is a unique decomposition

I = I1 ∩ I2 ∩ · · · ∩ Ik

such that Ii+Ij = A for i 6= j and Spec(A/Ii) is connected. Thenω naturally induces local L-orientationsωi : Fr/IiFr � Ii/I2i .
Denote

(I, ω) :=
∑

(Ii, ωi) ∈ Gr(A, L).

Similarly, we denote

(I) :=
∑
Ii ∈ Gr0(A, L).

5. Global orientations: Let I be an ideal and ω : Fr/IFr � I/I2 be a local L-orientation. We say that ω is global, if there’s a
surjective liftΩ of ω as follows:

Fr
Ω // //____

��

I

��
Fr/IFr ω

// // I/I2

.

6. LetHr(A, L) be the subgroup of Gr(A, L), generated by global L-orientations. Also, letHr0(A, L) be the subgroup of G
r
0(A, L),

generated by (I) such that I is surjective image of Fr .

Now define the Euler class group of codimension r cycles as

Er(A, L) =
Gr(A, L)
Hr(A.L)

.

and the weak Euler class group of codimension r cycles as

Er0(A, L) =
Gr0(A, L)
Hr0(A.L)

.

Lemma 2.2. We use the notations as in Definition 2.1. For r ≥ 1, there are natural surjective homomorphisms

ζ r : Er(A, L) � Er0(A, L).
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Further, assume that A is Cohen Macaulay. For r ≥ 2, there are natural homomorphisms

ηr : Er0(A, L)→ CHr(A)

and there is a natural homomorphism

η1 : E10 (A, A)→ CH1(A).

Here CHr(A) denotes the Chow group of cycles of codimension r in Spec(A).

Proof. Existence of ζ r follows from the above definitions of Er(A, L), Er0(A, L). Existence of η
r follows directly from

[5, Lemma A.2.7.]. �

3. Whitney class homomorphisms

In this section we establish the Whitney class homomorphism of a projective module, as follows.

Theorem 3.1. Let A be a commutative noetherian ring with dim A = d ≥ 2 and L, L′ be two rank one projective A-modules.
Suppose Q is a projective A-module with rank(Q ) = n ≤ d − 2 and detQ = L. For an orientation χ : L

∼
→∧

nQ , there is a
canonical homomorphism

w(Q , χ) : Ed−n(A, L′)→ Ed(A, L′L).

Also, for rank(Q ) = n = d− 1, there is a canonical homomorphism

w(Q , χ) : E1(A, A)→ Ed(A, L).

Proof. We will write Fk = L⊕ Ak−1, F ′k = L
′
⊕ Ak−1. Let I be an ideal of height d− n and

ω : F ′d−n/IF
′

d−n � I/I2

be an equivalence class of surjective homomorphisms (local L-orientation). To each such pair

(I, ω) ∈ Gd−n(A, L′),

we will associate an element

w(Q , χ) ∩ (I, ω) ∈ Ed(A, L′L).

First, we can find an ideal Ĩ ⊆ Awith height(Ĩ) ≥ d and a surjective homomorphism ψ : Q/IQ � Ĩ/I. Let ψ̄ = ψ ⊗ A/Ĩ
and γ : Fn/ĨFn

∼
→Q/ĨQ be an isomorphism such that ∧nγ = χ ⊗ A/Ĩ. Let β = ψ̄γ and β ′ : Fn/ĨFn → Ĩ/Ĩ2 be a lift of β.

The following diagram

Q/IQ
ψ // //

����

Ĩ/I

����
Q/ĨQ

ψ̄ // Ĩ/(I + Ĩ2)

Fn/ĨFn

oγ∼χ

OO

β

:: ::uuuuuuuuu

β ′
// Ĩ/Ĩ2

f

OOOO
(I)

commutes. Further, ω induces following

F ′d−n/IF
′

d−n

����

ω // // I/I2

����
F ′d−n/ĨF

′

d−n

ω′

&&LLLLLLLLLLL
ω̄ // // (I + Ĩ2)/Ĩ2

_�

��
Ĩ/Ĩ2

(II)
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commutative diagram, where ω̄ = ω ⊗ A/Ĩ. Combining ω′, β ′ we get a surjective homomorphism

δ = β ′ ⊕ ω′ : Fn/ĨFn ⊕ F ′d−n/ĨF
′

d−n =
Fn ⊕ F ′d−n
Ĩ
(
Fn ⊕ F ′d−n

) � Ĩ/Ĩ2.

To see that δ is surjective, consider the exact sequence

0 // (I + Ĩ2)/Ĩ2
� � // Ĩ/Ĩ2

f // Ĩ/(I + Ĩ2) // 0.

Given x ∈ Ĩ/Ĩ2, there is z ∈ Fn/ĨFn such that f (x) = β(z). Therefore, x − β ′(z) ∈ (I + Ĩ2)/Ĩ2. This implies that
ω′(z ′) = x− β ′(z) for some z ′ ∈ F ′d−n/ĨF

′

d−n. This shows that δ(z + z
′) = x. This establishes that δ is surjective.

Now, let γ0 : LL′⊕Ad−1

Ĩ(LL′⊕Ad−1)

∼
→

Fn⊕F ′d−n
Ĩ
(
Fn⊕F ′d−n

) be an isomorphism that is consistent with the natural isomorphism χ0:

LL′
∼ //

∼

%%KKKKKKKKKKK ∧
d
(
Fn ⊕ F ′d−n

)

∧
d
(
LL′ ⊕ Ad−1

)χ0o

OO
.

Let∆ = δγ0 = (β ′, ω′)γ0. So, the diagram

Fn⊕F ′d−n
Ĩ
(
Fn⊕F ′d−n

) δ // // Ĩ/Ĩ2

LL′⊕Ad−1

Ĩ(LL′⊕Ad−1)

χ0∼γ0 o

OO

∆

== =={{{{{{{{{{

commutes.
We have

(
Ĩ,∆

)
∈ Gd(A, LL′) is a local LL′-orientation. We will establish that the image of

(
Ĩ,∆

)
in Ed(A, LL′) is

independent of choices of ψ, the lift β ′, the representative of ω and the choice of γ0.

1. Step-I: First we prove, for a fixedψ,
(
Ĩ,∆

)
in Ed(A, LL′) is independent of the lift β ′, the representativeω and the choice

of γ0.

(a) Suppose ω,ω1 are equivalent local orientation. Then ω1 = ωε for some ε ∈ E l(F ′d−n/IF
′

d−n). Using the canonical
homomorphisms

E l(F ′d−n/IF
′

d−n)→ E l(F ′d−n/ĨF
′

d−n)→ E l
(
Fn ⊕ F ′d−n/Ĩ(Fn ⊕ F

′

d−n)
)
,

we have ω′1 = ω
′ε̃.With δ1 = (β ′, ω′1),we have

δ1 = δε̃ where ε̃ ∈ E l
(
Fn ⊕ F ′d−n/Ĩ(Fn ⊕ F

′

d−n)
)
.

Since

ε1 = γ
−1
0 ε̃γ0 ∈ E l

(
(LL′ ⊕ Ad−1)/Ĩ(LL′ ⊕ Ad−1)

)
,

we have

∆1 = δ1γ0 = δε̃γ0 = ∆ε1.

(b) Also, two different lifts β ′ of β differ in (I + Ĩ2)/Ĩ2 and would lead to two different∆s that differ by E l
(
LL′⊕Ad−1

Ĩ(LL′⊕Ad−1)

)
.

Proof. Let β ′′ : Fn/ĨFn → Ĩ/Ĩ2 be another lift of β. Then

φ = β ′ − β ′′ : Fn/ĨFn → (I + Ĩ2)/Ĩ2.
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We have a lift g so that the diagram

Fn/ĨFn
φ //

g

���
�
� (I + Ĩ2)/Ĩ2

F ′d−n/ĨF
′

d−n

ω′1 &&LLLLLLLLLLL ω̄1

// //
ω̄1

88 88rrrrrrrrrr
(I + Ĩ2)/Ĩ2

��
Ĩ/Ĩ2

commutes. Let

ε2 =

(
1 0
g 1

)
: Fn/ĨFn ⊕ F ′d−n/ĨF

′

d−n
∼
→ Fn/ĨFn ⊕ F ′d−n/ĨF

′

d−n

It follows (β ′′ ⊕ ω′1)ε2 = (β
′
⊕ ω′1). Therefore, with∆2 = (β

′′
⊕ ω′1)γ0 and ε3 = γ

−1
0 ε2γ0,we have

∆1 = (β
′
⊕ ω′1)γ0 = (β

′′
⊕ ω′1)ε2γ0 = (β

′′
⊕ ω′1)γ0

(
γ−10 ε2γ0

)
= ∆2ε3.

Therefore,

∆ = ∆1ε
−1
1 = ∆2ε3ε

−1
1 .

(c) Again, if γ0 = γ ′0ε4 for some ε4 ∈ E l
(
LL′⊕Ad−1

Ĩ(LL′⊕Ad−1)

)
then

∆ = ∆2ε3ε
−1
1 = (β

′′
⊕ ω′1)γ0ε3ε

−1
1 = (β

′′
⊕ ω′1)γ

′

0ε4ε3ε
−1
1 ∼ (β

′′
⊕ ω′1)γ

′

0.

So, the claim in Step-I is established. �

2. Also note,
(
Ĩ,∆

)
is independent of the choice γ . This is because, two different choices of γ would differ by a SL(Fn/ĨFn)-

map. This will lead to choices of β ′ that will differ by a SL(Fn/ĨFn)-map.

3. Step-II: Now, we prove that
(
Ĩ,∆

)
∈ Ed(A, LL′) is also independent of ψ. That means, it depends only on (I, ω).

(a) To see this, first we fix a surjective liftΩ of ω as follows:

F ′d−n
Ω // //

��

I ∩ K

��
F ′d−n/IF

′

d−n ω
// // I/I2

where K + I = A and K is an ideal of height d− n (or K = A).
(b) We can find an ideal K̃ with height(K̃) ≥ d, a surjective homomorphism ψ ′ and replicate the diagram (I):

Q/KQ
ψ ′ // //

����

K̃/K

����
Q/K̃Q // K̃/(K + K̃ 2)

Fn/K̃ Fn

oγ ′∼χ

OO

η

99 99ssssssssss

η′
// K̃/K̃ 2

f ′
OOOO

.

Here γ ′ is an isomorphism so that ∧nγ ′ = χ ⊗ A/K̃ and η′ is a lift of η = (ψ ′ ⊗ A/K̃)γ ′.
(c) Let ω′′ : F ′d−n/KF

′

d−n � K/K 2 be induced byΩ.

(d) As above, let γ ′0 :
LL′⊕Ad−1

K̃(LL′⊕Ad−1)

∼
→

Fn⊕F ′d−n
K̃
(
Fn⊕F ′d−n

) be an isomorphism consistent with the canonical isomorphism χ0 :

∧
d(Fn ⊕ F ′d−n)

∼
→∧

d(LL′ ⊕ Ad−1).



Author's personal copy

2284 S. Mandal, Y. Yang / Journal of Pure and Applied Algebra 214 (2010) 2279–2293

(e) Combining ω′′, η′ we get a surjective homomorphism

δ′ = η′ ⊕ ω′′ : Fn/K̃ Fn ⊕ F ′d−n/K̃ F
′

d−n =
Fn ⊕ F ′d−n
K̃
(
Fn ⊕ F ′d−n

) � K̃/K̃ 2.

(f) Write∆′ = δ′γ ′0.We fix
(
K̃ ,∆′

)
and prove that(

Ĩ,∆
)
+

(
K̃ ,∆′

)
= 0 ∈ Ed(A, LL′).

(g) Since I + K ⊆ Ĩ + K̃ ,we have Ĩ + K̃ = A.
(h) We have

Ψ = ψ ⊕ ψ ′ :
Q

(I ∩ K)Q
≈
Q
IQ
⊕
Q
KQ

�
Ĩ
I
⊕
K̃
K
≈
Ĩ ∩ K̃
I ∩ K

.

(i) We lift Ψ = ψ ⊕ ψ ′ to Ψ̄ as follows:

Q Ψ̃ //

��

Ĩ ∩ K̃

��
Q

(I∩K)Q Ψ

// // Ĩ∩K̃
I∩K .

If we reduce this diagram modulo Ĩ or K̃ ,we get the following

Q/ĨQ
ˆ̃
Ψ // Ĩ/Ĩ2

f
��

Q/ĨQ
ψ̄

// // Ĩ
I+Ĩ2

Fn/ĨFn

oγ∼χ

OO

β

== =={{{{{{{{

β ′
// Ĩ/Ĩ2

f
OOOO

and

Q/K̃Q
ˆ̃
Ψ // K̃/K̃ 2

f ′

��

Q/K̃Q
ψ̄ ′

// // K̃
I+K̃2

Fn/K̃ Fn

oγ ′∼χ

OO

η

<< <<yyyyyyyyy

η′
// K̃/K̃ 2

f ′
OOOO

commutative diagrams. It follows that

α1 = β
′γ−1 − ˆ̃Ψ : Q/ĨQ →

I + Ĩ2

Ĩ2
⊆
Ĩ

Ĩ2
.

Similarly, we have

α2 = η
′(γ ′)−1 − ˆ̃Ψ : Q/K̃Q →

K + K̃ 2

K̃ 2
⊆
K̃

K̃ 2
.

We lift α1, α2 to g1, g2 so that the diagrams

Q/ĨQ
α1 //

g1
���
�
� (I + Ĩ2)/Ĩ2

F ′d−n/ĨF
′

d−n

ω′

&&LLLLLLLLLLL
ω̄ // //

88 88rrrrrrrrrr
(I + Ĩ2)/Ĩ2

��
Ĩ/Ĩ2

,

Q/K̃Q
α2 //

g2
���
�
� (K + K̃ 2)/K̃ 2

F ′d−n/K̃ F
′

d−n

ω′′

&&NNNNNNNNNNN
Ω̃ // //

88 88ppppppppppp
(K + K̃ 2)/K̃ 2

��
K̃/K̃ 2

commute.
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(j) Let g be given by g1, g2 and γ̃ be given by γ , γ ′.Write

Γ =

(
1 0
g 1

)(
γ̃ 0
0 1

)
:

Fn⊕F ′d−n
(Ĩ∩K̃)(Fn⊕F ′d−n)

//

Γ %%KKKKKKKKKK

Q⊕F ′d−n
(Ĩ∩K̃)(Q⊕F ′d−n)

��
Q⊕F ′d−n

(Ĩ∩K̃)(Q⊕F ′d−n)

.

(k) Consider the surjective homomorphism

Q ⊕ F ′d−n
Ψ̃⊕Ω // //// Ĩ ∩ K̃ .

(l) We claim that the diagram

Q ⊕ F ′d−n
Ψ̃⊕Ω // //

����

Ĩ ∩ K̃

����
Q⊕F ′d−n

(Ĩ∩K̃)(Q⊕F ′d−n)

ˆ̃
Ψ⊕Ω̄ // Ĩ∩K̃

(Ĩ∩K̃)
2

Fn⊕F ′d−n
(Ĩ∩K̃)(Fn⊕F ′d−n)

Γ

OO

δ,δ′

;; ;;vvvvvvvvv

commutes. Only the commutativity of the bottom triangle needs to be checked. This is done by checking onV (Ĩ), V (K̃)
separately. We check directly that(

ˆ̃
Ψ ⊕ Ω̄

)
Γ (0, y) =

(
ˆ̃
Ψ ⊕ Ω̄

)
(0, y) = Ω̄(y) = (δ, δ′)(0, y)

and (
ˆ̃
Ψ ⊕ Ω̄

)
Γ (x, 0) =

(
ˆ̃
Ψ ⊕ Ω̄

)
(γ̃ (x), g γ̃ (x))

=
ˆ̃
Ψ γ̃ (x)+ Ω̄g γ̃ (x) = ˆ̃Ψ γ̃ (x)+ β ′γ−1γ (x)− ˆ̃Ψ γ̃ (x)β ′(x) = (δ, δ′)(x, 0).

(m) Composing with (γ0, γ ′0), it follows from [2, Cor. 4.4] that (∆,∆
′) is global. Therefore,(

Ĩ,∆
)
+

(
K̃ ,∆′

)
= 0 ∈ Ed(A, LL′).

(n) Since,
(
K̃ ,∆′

)
depends only on (I, ω), it follows

(
Ĩ,∆

)
is independent of choice of ψ. This establishes the claim in

Step-II.
4. If (I, ω) is global, then in the above proof, we can take K = A and it follows

(
Ĩ,∆

)
is global.

Now, the association

(I, ω) 7→
(
Ĩ,∆

)
∈ Ed(A, LL′)

defines a homomorphism

ϕ(Q , χ) : Gd−n(A, L′)→ Ed(A, LL′)

where (I, ω) ∈ Gd−n(A, L′) are the free generators of Gd−n(A, L′) and
(
Ĩ,∆

)
∈ Ed(A, LL′) are as above. The above discussions

establish that ϕ(Q , χ) is a well-defined homomorphism.
By (4), it follows that ϕ factors through a homomorphism

w(Q , χ) : Ed−n(A, L′)→ Ed(A, LL′).

This completes the proof of the theorem. �

By forgetting the orientation in Theorem 3.1, we have the following for weak Euler class groups.
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Corollary 3.2. Let A, L, L′,Q be as in Theorem 3.1. If rank(Q ) ≤ d− 2, then there is a canonical homomorphism

w0(Q ) : Ed−n0 (A, L′)→ Ed0(A, L
′L) ≈ Ed0(A, A).

Also for rank(Q ) = n = d− 1, there is a canonical homomorphism

w0(Q ) : E10 (A, A)→ Ed0(A, L) ≈ E
d
0(A, A).

Proof. The isomorphisms at the right side were proved in [2]. The rest of the proof is similar to that of Theorem 3.1 and we
give an outline. We will write Fk = L⊕ Ak−1, F ′k = L

′
⊕ Ak−1.

Suppose (I) is a generator of Gd−n0 (A, L′).Here I is an ideal of height d− r , Spec(A/I) is connected and there is a surjective
homomorphism F ′

IF ′n
� I/I2. There is a surjective homomorphism ψ : Q/IQ � Ĩ/I. For such a generator (I) we associate(

Ĩ
)
∈ Ed0(A, LL

′).

We fix a local orientation, ω : F
′

IF ′n
� I/I2, and a surjective liftΩ : F ′ � I ∩ K of ω, where K is an ideal of height d − n.

Now, let ψ ′ : Q/KQ � K̃/K , be a surjective homomorphism, where K̃ is an ideal of height d. As in Theorem 3.1, we prove
that there is a surjective homomorphism LL′ ⊕ Ad−1 � Ĩ ∩ K̃ . This shows that(

Ĩ
)
+

(
K̃
)
= 0 ∈ Ed0(A, LL

′)

and so
(
Ĩ
)
∈ Ed0(A, LL

′) is independent of choice of ψ.

This association (I) 7→
(
Ĩ
)
∈ Ed0(A, LL

′), extends to homomorphism

ϕ0 : Gd−n0 (A, L′)→ Ed0(A, LL
′).

If (I) is global, i.e. I is surjective image of F ′d−n, taking K = A in the above argument, we prove
(
Ĩ
)
is global. So, ϕ0 factors

through a homomorphism

w0(Q ) : Ed−n0 (A, L′)→ Ed0(A, LL
′).

This completes the proof. �
Definition 3.3. This homomorphismw(Q , χ) in Theorem 3.1, will be called theWhitney class homomorphism. The image of
(I, ω) ∈ Ed−n(A, L′) underw(Q , χ)will be denoted byw(Q , χ) ∩ (I, ω).
Similarly, the homomorphism w0(Q ) in (3.2) will be called the weak Whitney class homomorphism. The image of (I) ∈

Ed−n0 (A, L′) underw0(Q )will be denoted byw0(Q ) ∩ (I).
The following is about the compatibility of these homomorphisms, along with the Chern class homomorphisms.

Corollary 3.4. We use the notations as in Theorem 3.1 and Corollary 3.2. Further assume that A is a Cohen–Macaulay ring. Then,
we have

w0(Q )ζ d−n = ζ dw(Q , χ) and Cn(Q ∗)ηd−n = ηdw0(Q ),

where ζ d−n, ζ d, ηd−n, ηd are the natural homomorphisms as in Lemma 2.2 and Cn(Q ∗) denotes the top Chern class
homomorphism ([5]) of Q ∗.
Proof. The first identity follows from the definitions of w0(Q ) and w(Q , χ). To prove the second identity, let I be an ideal
of height d − n with a surjective homomorphism L′⊕Ad−n−1

I(L′⊕Ad−n−1)
� I/I2. By Eisenbud–Evans theorem (see [12]), we can find a

surjective homomorphismψ : Q � J,where J is an ideal of height(J) = n and height(I + J) = d.Write Ĩ = I + J. Note that
I, J, Ĩ are locally complete intersection ideals. We have,

ηdw0(Q ) ∩ (I) = ηd(Ĩ) = cycle(A/Ĩ).

Also

Cn(Q ∗)ηd−n(I) = Cn(Q ∗) ∩ cycle(A/I).

We have

Cn((Q/IQ )∗) ∩ (cycle(A/I)) =
(
cycle(A/Ĩ)

)
∈ CHn(A/I).

With f : Spec(A/I) ⊆ Spec(A), apply f∗. By the projection formula [5], we have

Cn(Q ∗) ∩ (cycle(A/I)) =
(
cycle(A/Ĩ)

)
∈ CHd(A).

So, the proof is complete. �
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The following is about vanishing of Whitney class homomorphisms.

Theorem 3.5. Suppose A, L, L′,Q , χ, Fk, F ′k be as in Theorem 3.1 and its proof. Let I be an ideal of height d−n andω :
F ′d−n
IF ′d−n

� I/I2

be a local L′-orientation. If Q/IQ = P0 ⊕ A/I, then

w(Q , χ) ∩ (I, ω) = 0 ∈ Ed(A, LL′).

In particular, if Q = P ⊕ A, then the homomorphism

w(Q , χ) : Ed−n(A, L′)→ Ed(A, LL′)

is identically zero. Similar statements holds forw0(Q ).
Proof. Proof of the last statement follows from the former assertions, by (3.4). We will enumerate the steps of the proof of
the former assertions.
1. By Eisenbud–Evans theorem [12], there is an ideal Ĩ ⊆ A with height(Ĩ) = d and a surjective homomorphism
ψ : Q/IQ � Ĩ/I. The following diagram

Q/IQ
ψ // //

����

Ĩ/I

����
Q/ĨQ

ψ̄ // Ĩ/(I + Ĩ2)

Fn/ĨFn

oγ∼χ

OO

β

:: ::uuuuuuuuu

β ′
// Ĩ/Ĩ2

f

OOOO
(I)

commutes. Here ψ̄ = ψ ⊗ A/Ĩ and γ is any isomorphism, with ∧nγ = χ ⊗ A/Ĩ, β = ψ̄γ and β ′ is a lift of β.
2. LetΩ be any lift of ω. Then, the following diagram

F ′d−n
Ω //

��

I

��
F ′d−n
IF ′d−n

����

ω // // I/I2

����
F ′d−n
ĨF ′d−n

ω′

��@@@@@@@@

ω̄ // // I/I Ĩ

��
Ĩ/Ĩ2

commutes. Here ω̄ = ω ⊗ A/Ĩ.
3. With Q/IQ = P0 ⊕ A/I, let θ be the restriction of ψ to P0.We can write ψ = (θ, ā) for some a ∈ Ĩ.Write ψ(P0) = J̃/I,
for some ideal J̃ containing I. In fact, height(J̃) = d− 1 and Ĩ = (J̃, a).

4. Since height(J̃) = d− 1, there is an isomorphism

γ ′ :
(
Fn−1/J̃Fn−1

)
∼
→ P0/J̃P0.

5. Define χ ′ as in the commutative diagram:

L/J̃L
χ⊗A/J̃ //

χ ′ $$IIIIIIIIIII ∧
n
(
P0⊕A/I
J̃(P0⊕A/I)

)
��

∧
n−1P0/J̃P0

o

OO
.

By adjusting the determinant, if needed, we can assume that ∧n−1γ ′ = χ ′.
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6. For our purpose, γ is a choice. So, we can assume that γ is the reduction of γ ′ ⊕ 1.
7. A commutative diagram similar to (I) is induced by θ as follows:

P0
θ // //

����

J̃/I

����
P0/J̃P0

θ̄ // J̃/(I + J̃2)

Fn−1/J̃Fn−1

oγ ′∼χ ′

OO
ζ

99 99rrrrrrrrrr

ζ ′
// J̃/J̃2

OOOO
(II).

Here θ̄ = θ ⊗ A/J̃ and ζ ′ is a lift of ζ = θ̄γ ′. If we tensor this diagram with A/Ĩ, we get the following commutative
diagram:

P0/ĨP0
θ // // J̃/

(
I + J̃ Ĩ

)

P0/ĨP0
θ̄ // J̃/

(
I + J̃ Ĩ

)
// Ĩ/
(
I + Ĩ2

)

Fn−1/ĨFn−1

oγ ′∼χ ′

OO

β|Fn−1

44iiiiiiiiiiiiiiiiiiii

ζ̄
99 99ssssssssss

ζ̄ ′
// J̃/J̃ Ĩ

OOOO

// Ĩ/Ĩ2

f
OOOO

(III).

8. This shows that (ζ̄ ′, ā) is a lift of β. Sincew(Q , χ) ∩ (I, ω) is independent of the lift β ′ we can assume that

β ′ = (ζ̄ ′, ā).

9. We lift ζ ′ to a homomorphism δ : Fn−1 → J̃.
10. The homomorphism

(δ, a,Ω) : Fn−1 ⊕ A⊕ F ′d−n → Ĩ

lifts (β ′, ω′) = (ζ̄ ′, ā, ω′).
11. Let J̃ ′ = δ(Fn−1)+Ω(F ′d−n). Then

J̃ = J̃ ′ + J̃2.

To see this, let y ∈ J̃. Then, from diagram (II), there is x ∈ Fn−1 such that

δ(x)− y = y1 + z where y1 ∈ I, z ∈ J̃2

Now, there is x1 ∈ F ′d−n such that

y1 −Ω(x1) = z1 ∈ I2 ⊆ J̃2.

Therefore δ(x)−Ω(x1)− y = z + z1.
12. There is an isomorphism

γ ′′0 :
LL′ ⊕ Ad−2

J̃
(
LL′ ⊕ Ad−2

) ∼→ Fn−1 ⊕ F ′d−n
J̃
(
Fn−1 ⊕ F ′d−n

)
such that the determinant is given by the commutative diagram:

LL′/J̃LL′
∼ //

∼ ##GGGGGGGGGG
LL′⊕Ad−2

J̃(LL′⊕Ad−2)

o ∧
d−1γ ′′0

��
Fn−1⊕F ′d−n
J̃
(
Fn−1⊕F ′d−n

)
.
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13. Let

Γ ′′0 : LL
′
⊕ Ad−2 → Fn−1 ⊕ F ′d−n

be any lift of γ ′′0 and

γ0 =
(
γ ′′0 ⊕ 1

)
⊗ A/Ĩ :

LL′ ⊕ Ad−1

Ĩ
(
LL′ ⊕ Ad−1

) ∼→ Fn ⊕ F ′d−n
Ĩ
(
Fn ⊕ F ′d−n

) .
14. Let Γ = (δ,Ω)Γ ′′0 .Write J̃

′′
= Γ

(
LL′ ⊕ Ad−2

)
. By (6),

J̃ = J̃ ′′ + J̃2.

15. There is an element ε ∈ J̃2 such that (1− ε)J̃ ⊆ J̃ ′′. So, as in [11], we have

J̃ =
(
J̃ ′′, ε

)
and Ĩ =

(
J̃, a
)
=

(
J̃ ′′, ε + (1− ε)a

)
.

16. It follows, with b = ε + (1− ε)a, that

(Γ , b) :
(
LL′ ⊕ Ad−2

)
⊕ A � Ĩ

is a surjective homomorphism.
17. Now, we have

(Γ , b)⊗ A/Ĩ = ((δ,Ω)Γ0, b)⊗ A/Ĩ = (δ,Ω, b)(Γ0 ⊕ 1)⊗ A/Ĩ

which is

=

(
(δ,Ω, b)⊗ A/Ĩ

)
γ0 = (β

′, ω′)γ0 ∼ ∆.

The last equality follows from (6). Therefore∆ is global.

Therefore,

w(Q , χ) ∩ (I, ω) =
(
Ĩ,∆

)
= 0 ∈ E(A, LL′).

The proof is complete. �
In analogy to results in Chern class theory [5], we have the following.

Corollary 3.6. Let A be a noetherian commutative ringwith dim A = d ≥ 2. Suppose L, L1, L2 ∈ Pic(A). Then, for x ∈ Ed−10 (A, L),
we have

w0(L1L2) ∩ x = w0(L1) ∩ x+ w0(L2) ∩ x ∈ Ed0(A, L) ≈ E
d
0(A, A).

Proof. We can assume x = (I)where I is an ideal of height d− 1 and there is a surjective homomorphism L⊕Ad−2

I(L⊕Ad−2)
� I/I2.

There are ideals Ĩ1, Ĩ2 of height d and surjective homomorphisms Li/ILi � Ĩi/I ⊆ A/I, for i = 1, 2. Since, dim A/I ≤ 1, we
can assume that Ĩ1 + Ĩ2 = A. Therefore,

L1L2 ⊗ A/I ≈ L1/IL1 ⊗ L2/IL2 maps onto Ĩ1/I ⊗ Ĩ2/I = Ĩ1 ∩ Ĩ2/I.

So,

w0(L1L2) ∩ (I) =
(
Ĩ1 ∩ Ĩ2

)
=

(
Ĩ1
)
+

(
Ĩ2
)
= w0(L1) ∩ (I)+ w0(L2) ∩ (I).

The proof is complete. �

4. Intersections in Euler class groups

We define an intersection product in the Euler class groups as follows.
Definition 4.1. Suppose A is a noetherian commutative ring with dim A = d ≥ 2 and L, L′ be two projective A-modules
of rank one. We write F = L ⊕ Ar−1, F ′ = L′ ⊕ As−1. Let I be an ideal of height r and J be an ideal of height s. Assume
height(I + J) ≥ r + s and suppose

ω : F/IF � I/I2 and ω′ : F ′/JF ′ � J/J2

are two local orientations. Then ω,ω′ induce a surjective homomorphism

η :
F ⊕ F ′

(I + J)(F ⊕ F ′)
�

(I + J)
(I + J)2
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according to the following

F⊕F ′
(I+J)(F⊕F ′)

(ω̄⊕ω̄′)// //

η
%% %%LLLLLLLLLLL
I

(I+J)I ⊕
J

(I+J)J

����
(I+J)
(I+J)2

commutative diagram, where ω̄ = ω ⊗ A/(I + J), ω̄′ = ω′ ⊗ A/(I + J). (We will continue to abuse notations and denote
elements in Gr(A, L) their images in Er(A, L) by same notations.)

1. If L′ = A, define intersection

(I, ω) ∩ (J, ω′) := (I + J, η) ∈ Er+s(A, L).

The right hand side is interpreted as zero, if I + J = A.
2. If r + s = d, define intersection

(I, ω) ∩ (J, ω′) := (I + J, ηγ0) ∈ Er+s(A, LL′)

where γ0 : LL′⊕Ad−1

(I+J)(LL′⊕Ad−1)
∼
→

F⊕F ′
(I+J)(F⊕F ′) is any isomorphism with ∧

dγ0 = Id. The right hand side is interpreted as zero, if
I + J = A.

Subsequently, we prove that the above (4.1) are well defined in the general set-up. The following lemma is about
intersections of global orientations.

Lemma 4.2. With all notations as in Definition 4.1, suppose ω′ is global. If s ≥ 2 or L′ = A. Then there is a surjective lift
Θ : F ⊕ F ′ � (I + J) of η. In particular,

1. in case L′ = A, the local orientation η is global;
2. and also in case L′ 6= A, and r + s = d, then ηγ0 is global.

Proof. If I+ J = A, there is nothing to prove. So, we assume height(I+ J) = r+s. Suppose f ′ = (g, a) : F ′ � J is a surjective
lift of ω′. Also, let f : F → I be any lift of ω. There is an e ∈ I2 such that (1− e)I ⊆ f (F).We claim that [11],

with b = e+ (1− e)a, I + J =
(
f (F), g(L′ ⊕ As−2), b

)
=: K.

First, (1−e) ∈ f (F)e. So, (1−e)a ∈ Ke. So, e = b−(1−e)a ∈ Ke. Therefore, Ae = (I+ J)e = Ke. If s > 1, let F ′′ = L′⊕As−2
and if s = 1, let F ′′ = 0.We haveK1−e =(

f (F)1−e, g(F ′′)1−e, b
)
=
(
I1−e, g(F ′′)1−e, b

)
=
(
I1−e, g(F ′′)1−e, a

)
= (I + J)1−e.

This shows thatΘ = (f , g, b) is a surjective lift of η.
Now we prove (2). Write θ = (f , g) and I = θ(F ⊕ F ′′). Since dim A/I ≤ 1, there is an isomorphism γ ′0 :

LL′⊕Ad−2

I(LL′⊕Ad−2)
∼
→

F⊕F ′′
I(F⊕F ′′) with ∧

d−1γ ′0 = 1. Since γ0 is a choice, we can assume that γ0 = (γ ′0 ⊕ 1) ⊗ A/(I + J). Let

Γ0 : LL′ ⊕ Ad−2 → F ⊕ F ′′ be any lift of γ0. Let K̃ = θΓ0
(
LL′ ⊕ Ad−2

)
. Then I = K̃ + I2 and I + J = (I, b).

There is ε ∈ I2 such that (1− ε)I ⊆ K̃ .Write c = ε + (1− ε)b. Then

I + J = (I, b) = (K̃ , c).

Therefore (θΓ0, c) :
(
LL′ ⊕ Ad−2

)
� I + J is a surjective lift of ηγ0. So, ηγ0 is global. This completes the proof. �

The following moving lemma is a tool for the rest of this paper.

Lemma 4.3. Suppose A is noetherian commutative ring with dim A = d. Let I, J be two ideals of height r and s, respectively.
Suppose F is a projective A-module of rank r and ω : F/IF � I/I2 is a surjective homomorphism. Also assume that J is locally
generated by s elements. Then, there is a surjective lift f : F � I ∩ K of ω such that (1) I + K = A (2) height(K) ≥ r and (3)
height(K + J) ≥ r + s.

Proof. The proof is done by the use of standard generalized dimension theory. First, there is a lift f0 : F → I of ω. Then
I = (f0(F), a) for some a ∈ I2.
LetPr−1 ⊆ Spec(A), be the set of all prime ideals ℘,with height(℘) ≤ r − 1 and a /∈ ℘. Also, letQr−1 ⊆ Spec(A) be the

set of all prime ideals ℘ such that J ⊆ ℘, a /∈ ℘ and height(℘/J) ≤ r − 1.Write P = Pr−1 ∪Qr−1.
Let d1 : Pr−1 → N be the restriction of the usual dimension function and d2 : Qr−1 → N be the dimension function

induced by that on Spec(Aa/Ja). Then d1, d2 induce a generalized dimension function d : P → N, ([12] or see [7]).
Now, (f0, a) ∈ F∗ ⊕ A is a basic element on P . Since, rank(F) = r > d(℘) for all ℘ ∈ P , there is a g ∈ F∗, such that

f = f0 + ag is basic on P . Clearly, f is a lift of ω and I = (f (F), a).
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Since, f is a lift of ω,we can write f (F) = I ∩ K , such that I + K = A. It is routine to check now that height(K) ≥ r and
height

(
J+K
J

)
≥ r. Since

(
J+K
J

)
is locally r generated, height

(
J+K
J

)
= r and for any minimal prime ℘ over J + K we have

height
(
J+K
J

)
= height

(
℘

J

)
= r.

Also, since J is locally s generated ideal of height s, height(℘) = height(J), for any minimal prime ℘ over J.
If J + K = A, there is nothing to prove. Suppose J + K ⊆ ℘1 be a minimal prime over J + K such that height(J + K) =

height(℘1), and J ⊆ ℘0 be a minimal prime over J, such that height(℘1/℘0) = height(℘1/J).We have,

height(℘1) ≥ height(℘1/℘0)+ height(℘0) = height(℘1/J)+ height(J)

= r + s. This completes the proof. �
The following lemma establishes the consistency of Definition 4.1.

Lemma 4.4. We use all the notations in Definition 4.1. Assume r ≥ 2 or L = A. Further, let I1 be an ideal of height r with
height(I1 + J) ≥ r + s and let

ω1 : F/I1F � I1/I21
be a local orientation. Suppose (I, ω) = (I1, ω1) ∈ Er(A, L).
1. If L′ = A, then

(I, ω) ∩ (J, ω′) = (I1, ω1) ∩ (J, ω′) ∈ Er+s(A, L).

2. If r + s = d, then

(I, ω) ∩ (J, ω′) = (I1, ω1) ∩ (J, ω′) ∈ Ed(A, LL′).

Proof. We will only prove (1). The proof of (2) is similar.
We have either height(I1 + J) = r + s or I1 + J = A.We will assume L′ = A. By Lemma 4.3, we can find a surjective lift

θ : F � I ∩ K of ω, where I + K = A and height(K + J) ≥ r + s. Since (I ∩ K , θ ⊗ A/(I ∩ K)) is global, by Lemma 4.2, we
have

(I, ω) ∩ (J, ω′)+ (K , θ̄ ) ∩ (J, ω′) = (I ∩ K + J, θ̄ ⊕ ω̄′) = 0 ∈ Er+s(A, L).

(This also works when K + J = A, in this case I ∩ K + J = I + J.) We will prove

(I1, ω1) ∩ (J, ω′)+ (K , θ̄ ) ∩ (J, ω′) = 0 ∈ Er+s(A, L).

Since (I, ω) = (I1, ω1) ∈ Er(A, L)we have (I1, ω1)+ (K , θ̄ ) = 0 ∈ Er(A, L). There exist, ideals {It : 1 ≤ t ≤ i+ j} of height
r and global orientations θt : F/ItF � It/I

2
t such that

(I1, ω1)+ (K , θ̄ )+
i+j∑
t=i+1

(It , θt) =
i∑
t=1

(It , θt) ∈ Gr(A, L) (I).

Again, by Lemma 4.3, there is a surjective liftΩ ′ : F ′ � J ∩ J ′ of ω′, such that height(J ′) ≥ s, J + J ′ = A and

height
(
J ′ + I ∩ K ∩

i+j
∩
t=1

It

)
≥ r + s.

The identity (I) is a purely formal identity. Note that Definition 4.1 applies to all the terms in the following expression and
by formal argument, it follows that from (I) that

(I1, ω1) ∩ (J ′, Ω̄ ′)+ (K , θ̄ ) ∩ (J ′, Ω̄ ′)+
i+j∑
t=i+1

(It , θt) ∩ (J ′, Ω̄ ′)

=

i∑
t=1

(It , θt) ∩ (J ′, Ω̄ ′)

in Gr+s(A, L). By Lemma 4.2, we have

(I1, ω1) ∩ (J ′, Ω̄ ′)+ (K , θ̄ ) ∩ (J ′, Ω̄ ′) = 0 ∈ Er+s(A, L) (II).

We also have

(I1, ω1) ∩ (J, ω′)+ (K , θ̄ ) ∩ (J, ω′)+ (I1, ω1) ∩ (J ′, Ω̄ ′)+ (K , θ̄ ) ∩ (J ′, Ω̄ ′)
= ((I1, ω1) ∩ (J, ω′)+ (I1, ω1) ∩ (J ′, Ω̄ ′))+ ((K , θ̄ ) ∩ (J, ω′)+ (K , θ̄ ) ∩ (J ′, Ω̄ ′))
= (I1, ω1) ∩ (J ∩ J ′, Ω̄ ′)+ (K , θ̄ ) ∩ (J ∩ J ′, Ω̄ ′) = 0.
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Combining with (II), we have

(I1, ω1) ∩ (J, ω′)+ (K , θ̄ ) ∩ (J, ω′) = 0 ∈ Er+s(A, L).

Therefore, the proof is complete. �

The following is our final result on intersection product.

Theorem 4.5. We use all the notations as in Definition 4.1.

1. With L = L′ = A, the association(
(I, ω), (J, ω′)

)
7→ (I, ω) ∩ (J, ω′) ∈ Er+s(A, A)

defines a bilinear homomorphism

∩ : Er(A, A)× Es(A, A)→ Er+s(A, A).

2. With L′ = A and r ≥ 2, the association(
(I, ω), (J, ω′)

)
7→ (I, ω) ∩ (J, ω′) ∈ Er+s(A, L)

defines a bilinear homomorphism

∩ : Er(A, L)× Es(A, A)→ Er+s(A, L).

3. If L′ 6= A, r + s = d and r ≥ 2, the association(
(I, ω), (J, ω′)

)
7→ (I, ω) ∩ (J, ω′) ∈ Er+s(A, LL′)

defines a bilinear homomorphism

∩ : Er(A, L)× Es(A, L′)→ Ed(A, LL′).

Proof. Proofs of (3), (1) are similar to that of (2). We only prove (2).
Fix x = (J, ω′) ∈ Gs(A, A) as in Definition 4.1. Suppose I1 is an ideal of height r and ω1 : FI1F � I1

I21
is a local orientation.

There is an ideal I and ω as in 4.1, such that (I1, ω1) = (I, ω) ∈ Er(A, L). Define

ϕx(I1, ω1) = (I, ω) ∩ (J, ω′) ∈ Er+s(A, L).

This is well defined by Lemma 4.4. By Lemma 4.2, ϕx factors through a homomorphism

ϕx : Er(A, L)→ Er+s(A, L).

Now, the association x 7→ ϕx defines a homomorphism

ϕ : Gs(A, A)→ Hom
(
Er(A, L), Er+s(A, L)

)
.

By Lemma 4.2, if x is a global orientation, then ϕx = 0. So, ϕ, factors through a homomorphism

∩ : Es(A, A)→ Hom
(
Er(A, L), Er+s(A, L)

)
.

This completes the proof. �

Forgetting the orientations, we get the following.

Corollary 4.6. There is an intersection product for the weak Euler class groups, corresponding to the same in Theorem 4.5.

Remark 4.7. From the definitions, it follows that the intersection products defined in Theorem 4.5 and Corollary 4.6 are
commutative and associative, whenever they are defined.
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