
Journal of Algebra 458 (2016) 156–170
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On the complete intersection conjecture of Murthy

Satya Mandal 1

University of Kansas, Lawrence, KS 66045, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 October 2015
Available online xxxx
Communicated by Steven Dale 
Cutkosky

Keywords:
Ideals
Polynomials
Complete intersections
Homotopy

Suppose A = k[X1, X2, . . . , Xn] is a polynomial ring over 
a field k and I is an ideal in A. M.P. Murthy conjectured 
that μ(I) = μ(I/I2), where μ denotes the minimal number 
of generators. Recently, Fasel [3] settled this conjecture, 
affirmatively, when k is an infinite perfect field, with 1/2 ∈ k
(always). We are able to do the same, when k is an infinite 
field. In fact, we prove similar results for ideals I in a 
polynomial ring A = R[X], that contains a monic polynomial 
and R is essentially smooth algebra over an infinite field k, or 
R is a regular ring over a perfect field k.
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1. Introduction

One of the fundamental problems in commutative algebra, over last forty years, has 
been the following conjecture of M.P. Murthy ([10], [6, pp. 85]), on complete intersections 
in affine spaces, as follows.

Conjecture 1.1. (See Murthy [10,6].) Suppose A = k[X1, X2, . . . , Xn] is a polynomial 
ring over a field k. Then, for any ideal I in A, μ(I) = μ(I/I2), where μ denotes the 
minimal number of generators.
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The conjecture (1.1) is sometimes referred to as Murthy’s complete intersection con-
jecture, because if I/I2 is free then it means that I would be a complete intersection ideal.

Recently, Fasel [3] settled this conjecture (with significant contributions from this 
author [see e. g. [3, Lemma 3.1.2]]), affirmatively, when k is an infinite perfect field, with 
1/2 ∈ k. In this article, we do the same when k is an infinite field, with 1/2 ∈ k. In 
fact, we prove a much stronger theorem (1.3), given below. A companion to Murthy’s 
conjecture would be the following open problem.

Open Problem 1.2. Suppose A = R[X] is a polynomial ring over a Noetherian com-
mutative ring R. Suppose I is an ideal in A that contains a monic polynomial. Is 
μ(I) = μ(I/I2)?

For such an ideal I, as in (1.2), when μ(I/I2) ≥ dim(A/I) + 2, Mohan Kumar ([9]) 
proved that I is image of a projective A-module of rank μ(I/I2) and it was proved in [7]
that μ(I) = μ(I/I2). For an ideal I, as in (1.2), without any further conditions, it was 
proved in [8], that I is set theoretically generated by μ(I/I2)-elements.

We settle this open problem (1.2), affirmatively, when R is a regular ring, as specified 
below (1.3).

Theorem 1.3. Let R be a regular ring containing an infinite field k, with 1/2 ∈ k. Assume 
R is essentially smooth over k or k is perfect. Suppose A = R[X] is the polynomial ring 
and I is an ideal in A that contains a monic polynomial. Then, μ(I) = μ(I/I2). In fact, 
for n ≥ 2, any set of n-generators of I/I2 lifts to a set of generators of I.

It was also well known that the validity of Murthy’s conjecture would have implications 
on the renowned epi-morphism problem (see 1.4) of S. Abhayankar [1]. For an exposition 
of the same the readers are referred to [2], which would be our main reference on this. 
We state the epi-morphism problem from [2, Question 2.1], as follows.

Open Problem 1.4 (S. Abhayankar). Suppose k is a field, with char(k) = 0. Let

ϕ : k[X1, X2, . . . , Xn] −→ k[Y1, . . . , Ym] be an epi-morphism of k-algebras

and I = ker(ϕ). Then, I is generated by n −m variables. That means I = (F1, . . . , Fm)
for some F1, . . . , Fn−m ∈ I and

k[X1, X2, . . . , Xn] = k[F1, . . . , Fn−m, Y ′
1 , . . . , Y

′
m].

A weaker version of the epi-morphism problem would be the following conjecture (see 
[2, Question 2.2]).

Conjecture 1.5 (S. Abhayankar). Suppose k is a field, with char(k) = 0 and

ϕ : k[X1, X2, . . . , Xn] −→ k[Y1, . . . , Ym] is an epi-morphism of k-algebras

and I = ker(ϕ). Then, μ(I) = n −m.
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As was indicated in [2], very limited progress has been made on the Problem 1.4. Note 
that Conjecture 1.5 is subsumed by Murthy’s Conjecture 1.1 and same is true regarding 
the progress (see [2]). A much stronger theorem, than the Conjecture 1.5, follows from 
(1.3) for polynomial algebras over regular rings R, as specified below (1.6).

Theorem 1.6. Let R be a regular ring over an infinite field k, with 1/2 ∈ k. Assume R is 
essentially smooth over k or k is perfect. Suppose

ϕ : R[X1, X2, . . . Xn] −→ R[Y1, Y2, . . . Ym] is an epi-morphism

of polynomial R-algebras and I = ker(ϕ). If n −m ≥ dimR + 1, then μ(I) = μ(I/I2). 
In particular, if R is local, then I is a complete intersection ideal.

Note that the hypotheses in (1.3) entails only finite data. So, when k is perfect, using 
the theorem of Popescu [11], for the purposes of the proofs of (1.3), we would be able to 
assume that R is a smooth affine algebra over an infinite field (see the arguments in the 
proof of [13, Theorem 2.1]). With this approach, results in this article (e.g. 3.9) would be 
an improvement upon the respective versions in [3], relaxing the hypotheses in [3] that 
the rings are of essentially finite type over infinite perfect fields. Other than that, we also 
give an alternate description (5.2) of the obstruction set π0 (Q2n) (A), defined in [3].

While the proof of Murthy’s conjecture in [3] is elegant, its simplicity is even more 
astonishing. Proofs are further simplified, in this article, by proving that, for ideals I in 
a polynomial ring A = R[X], that contains a monic polynomial, any local orientation 
is homotopically trivial (4.1). While reworking some of the proofs in [3], I also tried to 
elaborate the proof of [3, Theorem 1.0.5], and avoided any repetitions that would be 
unwarranted.

We comment on the organization of this article. In §2, we set up some notations and 
recall some of the definitions. To avoid the stronger hypotheses in [3], in §3, we restate 
and rework some of the results in [3]. In this section (§3), we also record a statement 
of the homotopy lifting property theorem (3.7), due to this author (unpublished), that 
was used in [3] and in (3.8). In §4 we prove the main theorem (1.3), in this article. In 
subsection §4.1, we summarize the main consequences of (1.3), including the solutions 
to Murthy’s conjecture (1.1) and the weaker epi-morphism conjecture (1.5). In §5, we 
provide an alternate description of the obstruction set π0 (Q2n) (A).

2. The obstruction presheaf

First, we establish some notations that will be useful throughout this article.

Notations 2.1. Throughout, k will denote a field (or ring), with 1/2 ∈ k and A, R will 
denote commutative Noetherian rings. For a commutative ring A and a finitely generated 
A-module M , the minimal number of generators of M will be denoted by μ(M).
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We denote

q2n+1 =
n∑

i=1
XiYi + Z2, q̃2n+1 =

n∑
i=1

XiYi + Z(Z − 1).

Denote

Q2n = Spec (A2n) where A2n = k[X1, . . . , Xn, Y1, . . . , Yn, Z]
(q̃2n+1)

(1)

and

Q′
2n = Spec (B2n) where B2n = k[X1, . . . , Xn, Y1, . . . , Yn, Z]

(q2n+1 − 1) . (2)

There are inverse isomorphisms α : A2n
∼−→ B2n β : B2n

∼−→ A2n given by

⎧⎪⎨
⎪⎩

α(xi) = xi

2 1 ≤ i ≤ n

α(yi) = yi

2 1 ≤ i ≤ n

α(z) = z+1
2

⎧⎪⎨
⎪⎩

β(xi) = 2xi 1 ≤ i ≤ n

β(yi) = 2yi 1 ≤ i ≤ n

β(z) = 2z − 1
(3)

Therefore, Q2n ∼= Q′
2n. For a quadratic form q, of rank n, over a field k, O(A, q) ⊆

GLn(A) would denote the q-orthogonal subgroup and EO(A, q) ⊆ O(A, q) would de-
note the elementary orthogonal subgroup. The category of schemes over Spec (k) will be 
denoted by Schk. Also, Sets will denote the category of sets.

The homotopy presheaf π0 (Q2n) of sets was proved to be a key tool in [3], which we 
recall next. Recall, a contravariant functor F : Schk → Sets is also called a presheaf.

Definition 2.2. Given a presheaf F : Schk → Sets, and a scheme X ∈ Schk, define 
π0(F)(X) by the pushout

F(X × A
1) T=0

T=1

F(X)

F(X) π0(F)(X)

in Sets (4)

Note that π0(F) is also a presheaf of sets.
For an affine scheme X = Spec (A) and a presheaf F , as above, we write F(A) :=

F(Spec (A)) and π0(F)(A) := π0(F)(Spec (A)). So, π0(F)(A) is given by the pushout 
diagram
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F(A[T ]) T=0

T=1

F(A)

F(A) π0(F)(A)

in Sets (5)

Given a scheme Y ∈ Schk, the association X �→ Hom(X, Y ) is a presheaf on Schk. 
This presheaf is often identified with Y , itself. So, in some literature one may write, 
Y for the presheaf Hom(−, Y ) and Y (X) := Hom(X, Y ). Most importantly for us, for 
schemes X, Y ∈ Schk, the pre-sheaves π0(Y )(X) are defined as in diagram (4), or (5). For 
the purposes of this article, π0 (Q2n) (X) and π0 (Q′

2n) (X) would be of our particular 
interest. For X = Spec (A), it follows immediately that, Q2n(A) and Q′

2n(A) can be 
identified with the sets, as follows:

Q2n(A) =
{

(f1, . . . , fn; g1, . . . , gn; s) ∈ A2n+1 :
n∑

i=1
figi + s(s− 1) = 0

}

Q′
2n(A) =

{
(f1, . . . , fn; g1, . . . , gn; s) ∈ A2n+1 :

n∑
i=1

figi + s2 − 1 = 0
}

The homotopy presheaves are given by the pushout diagrams in Sets:

Q2n(A[T ]) T=0

T=1

Q2n(A)

Q2n(A) π0 (Q2n) (A)

and

Q′
2n(A[T ]) T=0

T=1

Q′
2n(A)

Q′
2n(A) π0 (Q′

2n) (A)

The isomorphism Q2n ∼= Q′
2n, induces a bijection π0 (Q2n) (A) ∼= π0 (Q′

2n) (A).
For any ring A and v = (f1, . . . , fn; g1, . . . , gn; s) ∈ Q2n(A), let us denote by I(v) the 

ideal (f1, . . . , fn, s)A. Also, let ωv : An → I(v)
I(v)2 denote the surjective homomorphism 

defined by ei �→ fi + I2 where e1, . . . , en is the standard basis of An. Sometimes, ωv may 
be called a local orientation.

Now, we define local orientations of an ideal and the obstruction classes in π0 (Q2n).

Definition 2.3. Suppose A is a commutative ring and I is an ideal in A. For an integer 
n ≥ 1, a surjective homomorphism ω : An � I/I2 would be called a local n-orientation
of I. Clearly, a local n-orientation is determined by any set of elements f1, . . . , fn ∈ I

such that I = (f1, . . . , fn) +I2. Further, given such a set of generators f1, . . . , fn of I/I2, 
by Nakayama’s lemma, there is an s ∈ I such that (1 − s)I ⊆ (f1, . . . , fn)A, and hence ∑n

i=1 figi + s(s − 1) = 0 for some g1, . . . , gn ∈ A. Note,

(f1, . . . , fn; g1, . . . , gn; s) ∈ Q2n(A).
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Write

ζ(I, ω) := [(f1, . . . , fn; g1, . . . , gn, s)] ∈ π0 (Q2n(A))

It was established in [3, Theorem 2.0.7], that this association is well defined. We refer to 
ζ(I, ω), as an obstruction class. Therefore, we have a commutative diagram

Q2n(A)
ζ

η

O(A,n)
ζ

π0 (Q2n(A))

where O(A,n) = the set of all n-orientations (I, ω)

and η(v) = (I(v), ωv). Note that we use the same notation ζ for two set theoretic maps.

3. Homotopy and the lifting property

In this section, we restate and rework, under the relaxed hypotheses in this article, 
some of the results in [3] on the homotopy lifting property of the local orientations, 
to point out the modifications needed. First, we quote and interpret the theorem [12, 
Theorem 1.3].

Theorem 3.1. Suppose A is a regular ring containing a perfect field k. Let G be a reductive 
group scheme over k such that every semi-simple normal subgroup of G contains G2

m. 
Let E(A) denote the corresponding elementary subgroup (see [12, §2]). Then,

∀ σ(T ) ∈ G(A[T ]), σ(0) = 1 =⇒ σ(T ) ∈ E(A[T ]).

In particular, with G = O(q2n+1), we have

∀ σ(T ) ∈ O(A[T ], q2n+1) ⊆ GLn(A[T ]), σ(0) = 1 =⇒ σ(T ) ∈ EO(A[T ], q2n+1).

Corollary 3.2. Suppose A is a regular ring containing a field k. Then,

∀ σ(T ) ∈ O(A[T ], q2n+1), σ(0) = 1 =⇒ σ(T ) ∈ EO(A[T ], q2n+1).

Proof. We will be following the arguments in [13, Theorem 2.1], to reduce the problem to 
the perfect field case. Let F be the prime subfield of k. By including the coefficients of the 
entries of σ(T ), there is a finitely generated subalgebra A′ ⊆ A over F such that σ(T ) ∈
A′[T ]. Note, σ(T ) ∈ O(A′[T ], q2n+1) and σ(0) = 1. Note F → A is geometrically regular 
(as defined in [13]). By Popescu’s theorem [13, Corollary 1.2], we have the diagram
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F A′ B

A

of homomorphisms

such that B is smooth over F. Since F is perfect, by Theorem 3.1, the image(σ(T )) in B[T ]
is in EO(B[T ], q2n+1). Therefore, σ(T ) ∈ EO(A[T ], q2n+1). The proof is complete. �
Remark 3.3. The method of reduction to the perfect field case, in the proof of (3.2), 
using Popescu’s theorem [13, Corollary 1.2] has the same flavor of the similar reduction 
in [14, pp. 507], due to Mohan Kumar, which is more elementary. One can work out an 
alternate proof of (3.2), using this argument of Mohan Kumar.

For the benefit of the readers, we would elaborate the proof of [3, Theorem 1.0.5], 
while reworking without the perfectness condition in [3]. Note that the orthogonal group 
O(A, q2n+1) acts on Q′

2n(A) in a natural way and therefore the elementary orthogo-
nal group EO(A, q2n+1) also acts on Q′

2n(A). We will denote the set of orbits of the 
EO(A, q2n+1)-action by Q′

2n(A)
EO(A,q2n+1) .

Theorem 3.4. Let A be a essentially smooth algebra over an infinite field k, with 1/2 ∈ k. 
Then, for n ≥ 2, the natural map

ϕ : Q′
2n(A)

EO(A, q2n+1)
−→ π0 (Q′

2n) (A) is a bijection.

Proof. Clearly, ϕ is well defined and is surjective. Now suppose H(T ) ∈ Q′
2n(A[T ])

is a homotopy. We need to show that there is a matrix τ ∈ EO(A, q2n+1) such that 
H(0) = H(1)τ . For R = B2n, A[T ], A, use the following generic notations, to denote the 
quadratic modules

{
q := q2n+1 : R2n+1 → R sending (u1, . . . , un, v1, . . . , vn, s) �→

∑n
i=1 uivi + s2

q0 : R → R sending s �→ s2

As usual, define Bq(e, e′) = q(e+e′)−q(e)−q(e′)
2 . With respect to the standard basis, the 

matrix of Bq is given by

Bq := 1
2

⎛
⎜⎝ 0 In 0

In 0 0
0 0 2

⎞
⎟⎠

So, the map R2n+1 → (R2n+1)∗ sends v �→ vBq. These bilinear forms give the following 
exact sequences (write B := B2n)
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0 K B2n+1 〈(x,y,z),−〉
B 0

0 K A[T ]2n+1 〈H(T ),−〉
A[T ] 0

0 K0 A2n+1
〈H(0),−〉

A 0

So, K = (B(x,y, z))⊥ , K = (A[T ]H(T ))⊥ , K0 = (AH(0))⊥

are orthogonal complements, which inherit the quadratic structures. It follows K :=
K ⊗ A[T ]

(T ) = (RH(0))⊥ ∼= K0. Therefore, there is an isometry, σ0 : K0
∼−→ K, which 

extends to σ0 ⊗ A[T ] : K0 ⊗ A[T ] ∼−→ K ⊗ A[T ], an isometry. (For clarity, note that 
it follows from Lindel’s theorem ([5]) that there is an isomorphism K ⊗ A[T ] ∼−→ K, 
which need not be an isometry.) We claim that K is extended from A. The question 
is local (see [4, 5.3.2]). In the local case, K is extended from A, by [15, Theorem 3.1]. 
This is because K corresponds to a O(q2n, A[T ])-torsor, where q2n =

∑n
i=1 XiYi is the 

hyperbolic quadratic form. In deed, K corresponds to a Zariski locally trivial torsor. 
This establishes the claim (see [3] for further details).

Hence, there is an isometry K⊗A[T ] ∼−→ K. By this identification, we say σ0 extends 
to an isometry σ0 ⊗A[T ] : K0 ⊗A[T ] ∼−→ K. Also, note

(A[T ]H(T ), q|A[T ]H(T )) ∼= (A[T ], q0) ∼= (A[T ]H(0), q|A[T ]H(0))

Putting all these together, there is an isometry σ(T ) ∈ O (A[T ], q) such that the diagram

0 K0 ⊗A[T ]

σ0⊗1

A[T ]2n+1

σ(T )

〈H(0),−〉
A[T ] 0

0 K A[T ]2n+1
〈H(T ),−〉

A[T ] 0

(6)

commutes. By construction, (alternately, by composing with σ(0)−1⊗Id), we have σ(0) =
I2n+1. Now, by Corollary 3.2, it follows σ(T ) ∈ EO(A[T ]) and hence σ(1) ∈ EO(A). Since 
H(T )σ(T ) = H(0), the proof is complete. �

Before we proceed, we define the action of EO (A, q2n+1) on Q2n(A) and give another 
definition, for the convenience of subsequent discussions.

Definition 3.5. Fix a commutative ring A. As usual, EO (A, q2n+1) acts on A2n+1, which 
restricts to an action on Q′

2n(A). Using the correspondences α : Q2n(A) ∼−→ Q′
2n(A), 

β : Q′
2n(A) ∼−→ Q2n(A), define an action on Q2n(A) as follows:
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∀ v ∈ Q2n(A),M ∈ EO (A, q2n+1) define v ∗M := β (α(v)M)

This action is not given by the usual matrix multiplication. Five different classes of the 
generators of EO (A, q2n+1) and their actions on Q2n(A) are given in [3].

Definition 3.6. Let A be a commutative ring over k. Let v ∈ Q2n(A). We write v :=
(a1, . . . , an; b1, . . . , bn; s). For integers, r ≥ 1 we say that r-lifting property holds for v, 
if

I(v) = (a1 + μ1s
r, . . . , an + μns

r) for some μi ∈ A.

We say the lifting property holds for v, if

I(v) = (a1 + μ1, . . . , an + μn) for some μi ∈ I(v)2.

Before we allude to the key result in [3, Corollary 3.2.6] (see (3.8)), we record the 
following homotopy lifting theorem, due to this author (unpublished), that was used 
crucially in the proof.

Theorem 3.7. Let R be a regular ring containing a field k. Let H(T ) := (f1(T ), . . . , fn(T ),
g1(T ), . . . , gn(T ), s) ∈ Q2n(R[T ]), with s ∈ R. Write ai = fi(0), bi = gi(0). Write I(T ) =
(f1(T ), . . . , fn(T ), s). Also assume I(0) = (a1, . . . , an). Then,

I(T ) = (F1, . . . , Fn)  fi − Fi ∈ s2R[T ]

Proof. See [3, Lemma 3.1.2]. �
Theorem 3.8. Suppose A is a regular ring containing a field k, with 1/2 ∈ k. Let n ≥ 2
be an integer. Let v ∈ Q2n(A) and M ∈ EO (A, q2n+1). Then, v has 2-lifting property if 
and only if v ∗M has the 2-lifting property.

Proof. We outline the proof in [3]. It would be enough to assume that M is a generator 
of EO (A, q2n+1). There would be five cases to deal with, one for each type of generators 
of EO (A, q2n+1), listed in [3, pp. 3–4]. One of them, that is of the case of generators of 
the type 4 (in the list [3, pp. 3–4]), is fairly involved. This case follows from Theorem 3.7
(see [3, Lemma 3.1.2]). �

The following summarizes the final results on homotopy and lifting of generators (also 
see [3, Theorem 3.2.7]).

Theorem 3.9. Suppose A is a regular ring containing an infinite field k, with 1/2 ∈ k. 
Assume A is essentially smooth over k or k is perfect. Let n ≥ 2 be an integer. Denote 
0 := (0, . . . , 0; 0, . . . , 0; 0) ∈ Q2n(A) and let v ∈ Q2n(A). Then, the following conditions 
are equivalent:
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1. The obstruction ζ (I(v, ωv)) = [0] ∈ π0 (Q2n) (A).
2. v has 2-lifting property.
3. v has the lifting property.
4. v has r-lifting property, ∀ r ≥ 2.

Proof. It is clear, (2) =⇒ (3). To prove (3) =⇒ (1), suppose I(v) = (a1+μ1, . . . , an+μn), 
with μi ∈ I(v)2. Write v′ = (a1 + μ1, . . . , an + μn; 0, . . . , 0; 0) ∈ Q2n(A). By [3, 2.0.10], 
we have ζ (I(v, ωv)) = ζ (I(v′, ωv′)) = [v0] ∈ π0 (Q2n). This establishes, (3) =⇒ (1).

Now we prove (1) =⇒ (2). Assume ζ (I(v, ωv)) = [0]. In case A is essentially finite 
over k, it follows from Theorem 3.4 that 0 = v ∗ M , for some M ∈ EO(A, q2n+1) and 
(2) follows from Theorem 3.8. However, when A is regular and contains an infinite perfect 
field, we have to use Popescu’s theorem. By definition, ζ (I(v, ωv)) = [0] implies that 
there is a chain homotopy from v to 0. This data can also be encapsulated in a finitely 
generated algebra A′ over k. As in the proof of (3.2) there is a diagram

k A′ ι
B

A

of homomorphisms

such that B is smooth over k. The homotopy relations are carried over to B. Therefore, 
by replacing A by B, we can assume that A is essentially smooth over k. So, Theorem 3.4
applies and (2) follows as in the previous case.

So, it is established that (1) ⇐⇒ (2) ⇐⇒ (3). It is clear that (4) =⇒ (2). Now suppose, 
one of the first three conditions hold. Fix r ≥ 2. Notice I(v) = (a1, . . . , an, sr)A. So, 
replacement of s by sr leads to the same obstruction class in ∈ π0 (Q2n) (A), which is 
= [0] ∈ π0 (Q2n) (A). Since (1) ⇐⇒ (2), it follows I(v) has 2r-lifting property and hence 
the r-lifting property. The proof is complete. �
4. Monic polynomials and the lifting property

In this section, first we give an application of (3.9), for ideals containing monic polyno-
mials. In fact, we prove that all local orientations of such ideals have trivial obstruction 
class, as follows.

Proposition 4.1. Suppose R = A[X] is a polynomial ring over a commutative ring A
and I is an ideal that contains a monic polynomial. Suppose ω : Rn � I/I2 is a sur-
jective homomorphism (local orientation). Then ζ(I, ω) = [0] ∈ π0 (Q2n) (R), where 
0 := (0, 0, . . . , 0, 0, . . . , 0) ∈ Q2n(R).

Proof. Let f1, . . . , fn ∈ I be a lift of ω. Then, I = (f1, f2, . . . , fn) + I2. We can assume 
that f1 is a monic polynomial, with even degree. Now, consider the transformation [7]:
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ϕ : A[X,T±1] ∼−→ A[X,T±1] by
{

ϕ(X) = X − T + T−1

ϕ(T ) = T

There is a commutative diagram

A[X] A[X]

A[X,T±1]
ϕ

A[X,T±1]

T=1

Then, ϕ(f1) = f1(X − T + T−1) is doubly monic in T , meaning that its lowest and 
the highest degree terms have coefficients 1. Let F1(X, T ) = T deg f1(X)ϕ(f1) ∈ A[X, T ]. 
Then, F1(X, 0) = 1. Also, for i = 2, . . . , n write Fi(X, T ) = T δϕ(fi), for some integer 
δ � 0, such that Fi(X, T ) ∈ TA[X, T ]. Therefore, Fi(X, 0) = 0. Now, write

I ′ = ϕ(IA[X,T±1]) and I := I ′ ∩A[X,T ].

Since A[X,T ]
I

∼−→ A[X,T±1]
I ′ , it follows

I = (F1(X,T ), . . . , Fn(X,T )) + I 2.

Therefore, by Nakayama’s Lemma, there is a S(X, T ) ∈ I , such that

(1 − S(X,T ))I ⊆ (F1(X,T ), F2(X,T ), . . . , Fn(X,T ))

and hence
∑

Fi(X,T )Gi(X,T ) + S(X,T )(S(X,T ) − 1) = 0

for some G1, . . . , Gn ∈ A[X, T ]. Write

ψ(X,T ) = (F1(X,T ), F2(X,T ), . . . , Fn(X,T );G1(X,T ), . . . , Gn(X,T );S(X,T ))

Then, ψ(X, T ) ∈ Q2n(A[X, T ]) and I|T=1 = I. Further,

ψ(X, 1) = (f1, . . . , fn;G1(X, 1), . . . , Gn(X, 1);S(X, 1))

and

ψ(X, 0) = (1, 0, . . . , 0;G1(X, 0), . . . , Gn(X, 0), S(X, 0)).

By [3, 2.0.10], ψ(X, 0) ∼ 0 ∈ Q2n(R). Hence, ψ(X, 1) ∼ 0 ∈ Q2n(R). Therefore,

ζ(I, ω) = [ψ(X, 1)] = [0] ∈ π0 (Q2n(R)) .
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The proof is complete. �
The following is the main theorem in this article, which is an extension of the main 

theorem in [7] mentioned in the introduction.

Theorem 4.2. Let R be a regular ring over an infinite field k, with 1/2 ∈ k and A = R[X]
is the polynomial ring. Assume R is essentially smooth over k or k is perfect. Suppose, 
I is an ideal in A that contains a monic polynomial. Then μ(I) = μ(I/I2). In fact, if 
μ(I/I2) ≥ 2, any local orientation ω : An � I/I2 lifts to a set of generators of I.

Proof. If μ(I/I2) = 1, then I is an invertible ideal with a monic polynomial, hence it is 
free. The rest follows immediately from Proposition 4.1 and Theorem 3.9. The proof is 
complete. �
4.1. The consequences

In this subsection, we summarize some of the consequences of the monic polynomial 
Theorem 4.2. First, the following is the statement on the solution of the conjecture of 
M.P. Murthy (1.1). The theorem is due to Fasel [3, Theorem 3.2.9], in the case when k
is perfect. However, our proof is much direct.

Theorem 4.3. Let k be an infinite field, with 1/2 ∈ k. Let A = k[X1, . . . , Xn] be the 
polynomial ring. Then, for any ideal I of A, μ(I) = μ(I/I2).

Proof. By a change of variables (see [6, Theorem 6.1.5]), we can assume that I contains 
a monic polynomial in Xn. Now, the proof is complete by (4.2). �

Following would be a more general version of Theorem 4.3.

Theorem 4.4. Let R be a regular ring over an infinite field k, with 1/2 ∈ k and A =
R[X1, X2, . . . , Xn] be the polynomial ring in n variables. Assume R is essentially smooth 
over k or k is perfect. Suppose, I is an ideal in A with height(I) ≥ dimR + 1. Then 
μ(I) = μ(I/I2). In fact, if μ(I/I2) ≥ 2, any local orientation ω : An � I/I2 lifts to a 
set of generators of I.

Proof. Again, by a change of variables (see [6, Theorem 6.1.5]), we can assume that I
contains a monic polynomial in Xn. Now, the proof is complete by (4.2). �

The following encompasses the solution of the weaker version of S. Abhyankar’s epi-
morphism conjecture (1.5), in the case when k is an infinite field.

Theorem 4.5. Let R be a regular ring over an infinite field k, with 1/2 ∈ k. Assume R is 
essentially smooth over k or k is perfect. Suppose
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ϕ : R[X1, X2, . . . Xn] −→ R[Y1, Y2, . . . Ym] is an epi-morphism

of polynomial R-algebras and I = ker(ϕ). If n −m ≥ dimR + 1, then μ(I) = μ(I/I2). 
In particular, if R is local, then I is a complete intersection ideal.

Proof. Since, height(I) = n −m ≥ dimR+ 1, it follows from (4.4) that μ(I) = μ(I/I2). 
Note I/I2 is a projective R[Y1, Y2, . . . Ym]-module of rank n −m. If R is local, then I/I2

is free of rank n −m (see [13, Theorem 2.1]). Hence, μ(I) = μ(I/I2) = n −m. So, I is a 
complete intersection ideal. The proof is complete. �

The following is the statement on the solution of the weaker version of S. Abhyankar’s 
epimorphism conjecture (1.5).

Corollary 4.6. Suppose k is an infinite field, with 1/2 ∈ k and

ϕ : k[X1, X2, . . . Xn] −→ k[Y1, Y2, . . . Ym] is an epi-morphism

of polynomial rings. Then, I is generated by n −m elements.

Proof. Follows immediately from (4.5). �
5. Alternate obstructions

In this section, we give an alternate description of the obstruction sheaf π0 (Q2n) (A), 
which appears more traditional.

Definition 5.1. Suppose A is a commutative ring and n ≥ 1 is an integer. Write

Qn(A) :=
{

(f1, . . . , fn, s) ∈ An+1 : ∃ g1, . . . , gn ∈ A 
n∑

i=1
figi + s(s− 1) = 0

}

Note A �→ Qn(A) is a presheaf on the category of affine schemes. As in diagram (4), one 
can define π0 (Qn(A)), by the pushout:

Qn(A[T ]) T=0

T=1

Qn(A)

Qn(A) π0 (Qn) (A)

in Sets.

There is a natural map of sheaves Q2n(A) → Qn(A) sending

(f1, . . . , fn; g1, . . . , gn; s) �→ (f1, . . . , fn, s)

This induces a surjective map Φ : π0 (Q2n) (A) � π0 (Qn) (A).
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Lemma 5.2. The map Φ : π0 (Q2n) (A) � π0 (Qn) (A) is a bijection.

Proof. We define the inverse map Ψ : π0(QP ) −→ π0 (Q2n(A)). Let (f1, . . . , fn, s) ∈
Qn(A). Then, 

∑
figi + s(s − 1) = 0 for some gi ∈ A. We define,

Ψ ([(f1, . . . , fn, s)]) = [(f1, . . . , fn; g1, . . . , gn; s)] ∈ π0 (Q2n) (A).

We need to show that Ψ is well defined. With I = (f1, . . . , fn, s), let ω : An �
I
I2 be induced by f1, . . . , fn. By [3, Lemma 2.0.10], the obstruction ζ(I, ωI) :=
[(f1, . . . , fn; g1, . . . , gn; s)] ∈ π0 (Q2n(A)) is independent of g1, . . . , gn. Therefore, Ψ is 
well defined. It is now clear that

ΦΨ = Id and ΨΦ = Id.

The proof is complete. �
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