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On efficient generation of ideals

S. Mandal

Tata Institute of Fundamental Research, School of Mathematics, Homi Bhaba Road,
Bombay 400 005, India

0. Introduction

In this paper we shall discuss the question that if R is a commutative noetherian
ring and I is an ideal of R, then whether I is generated by u(I/I?) elements (u
denotes minimal number of generators). In general it is known that
p(I/I%) < () < p(I/1%) +1 ([5], Lemma).

The Main result (Theorem 1.2) here is that if R=A[X] is a polynomial ring
over a noetherian commutative ring and I is an ideal of R which contains a monic
polynomial and if u(I/I1*)=dim(R/I)+2 then I is actually generated by u(I/I?)
elements. This result is an improvement of a result of Mohan Kumar ([5], page
161, Satz 5.18), which says that under the same conditions I is a quotient of a
projective module of rank u(I/I?).

The final result in this paper is Theorem 2.2. The theorem says that if R
=A[X,, ..., X,, T, ..., T.*"], n and r=20 is a Laurent polynomial ring, with n
polynomial variables and r Laurent polynomial variables, over a noetherian
commutative ring A and if I is an ideal of R with u(I/I*)=dim(R/I)+2 and
height (I)>dim A, then I is generated by u(I/I?) elements.

When R is a polynomial ring over a field then this theorem is due to
Mohan Kumar ([6], 4, Theorem 5). In the polynomial case i.e. when r=0
Theorem 2.2 is stated as Corollary 1.5.

In [4] we have proved Theorem 2.2 for r>0 ([4], Chapter III, Theorem
2.3). For r=0, the content of Corollary 1.5 was raised as a question ([4],
Chapter III, Remark 2.6). S.M. Bhatwadekar and R.A. Rao ([2]) proved
Corollary 1.5 in the case when A is affine domain.

Before we conclude this section we shall recall some standard notations.

Throughout this paper R and 4 will denote commutative noetherian rings
with finite krull dimension. By dim A we shall mean the Krull dimension of A.
For an R-module M, u(M) will denote the minimal number of generators of M
as an R-module.
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R=A[X,,....X,, T}, ..., T*'], n and r 20 will be the Laurent polynomial
ring over A4, with n polynomial variables X,, ..., X, and r Laurent polynomial
variables T}, ..., T,.

r

1. The main result

In this section we shall prove our main result (Theorem 1.2). Before we go in
to our main discussion we introduce the following definitions.

Definition 1.1. A monic polynomial f in A[X] is said to be a special monic
polynomial if the constant term of f is equal to one. A Laurent polynomial f in
A[X,X 1] is said to be doubly monic Laurent polynomial if both the coef-
ficients of the highest degree term and the lowest degree term in f are equal to
one.

So, a special monic polynomial is a doubly monic Laurent polynomial.

Theorem 1.2. Let R=A[X] be a polynomial ring over a commutative noetherian
ring A and I an ideal of R. Suppose I contains a monic polynomial and
u(I/1*)=dim (R/I)+2. Then u(I)=p(I/I?).

In the proof of Theorem 1.2 we shall actually extend the ideal I to the
Laurent polynomial extension R[T, T-']=A[X,T,T~!] and prove that
IR[T,T~'] is generated by u(I/I?) elements. Following remark introduces a
change of variable in A[X, T, T~!], which will be used in the proof of the
theorem.

Remark 1.3. Let R=A[X] be as in Theorem 12 and R[T,T"!]
=A[X, T, T~'] be its Laurent polynomial extension. Define an A-automor-
phism 0 of R[T, T~'] as follows,

0X)=X+T+T"!
6(T)=T.

We observe that if f is a monic polynomial in R then 6(f) is doubly monic
Laurent polynomial in T.

We state another lemma before we give the proof of the Theorem 1.2. This
lemma is a slight variation of Mohan Kumar’s lemma ([6], 3, Lemma 3) on
prime avoidance and the proof is also similar.

Lemma 1.4. Let A be a commutative noetherian ring and 1, J be ideals of A, I
containing J. Let n=pu(I/I*). Assume that a,,...,a,; r<n are elements of I.
Further suppose,

(i) a,,a,,...,a, form a part of a minimal set of generators of I mod I

(i) Whenever P is a prime ideal of A which contains (a, A+ ...+a,A)+J and
does not contain I, the image of P in Af(a; A+J) has height at least d, for some
fixed integer d.

Then we can find a, , in I such that,

() ay,...,a,,; form a part of minimal set of generators of ImodI>.
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(i) Whenever P is a prime ideal of A, which contains (a;A+...+a,,  A)
+JA and does not contain I, the image of P in Af(a;A+J) has height atleast
d+1.

Proof of Theorem 1.2. Suppose a, belongs to a minimal set of generators of
I'modI? Since I contains a monic polynomial f, replacing a, by a,+f? for
large enough p, we can assume a, is monic.

Write J=A4AnI1. Then A/J >R/l and A/J -»R/(J,a,)R are integral exten-
sions. So we have dim (A[X]/I)=dim(4/J)=dim (R/(J, a,)R).

Write B=R/(J,a,)R. By Lemma 1.4 we can choose a, in I such that,

(i) a,, a, form a part of minimal set of generators of I mod I*

(ii) If a prime ideal P of R contains a, R+a,R+JR and does not contain
I, then image of P in B has height atleast one.

If we write n=pu(I/I?), then by iterating the above process we can find
a,...,a, in I with a; monic and such that,

(i) ay,...,a, form a minimal set of generators of I mod I

(i) Whenever P is a prime ideal of R which contains (a,R+...+a,R)+JR
and does not contain I, the image of P in B has height atleast n—1.

Since n=dim (R/I)+2=dim B +2, by (ii) we have,

(iii) For a prime ideal P of R, if P contains (a,R+...+a,R)+JR then P
also contains I.

Let R =A[X, T, T~']=R[T, T~ '] be the Laurent polynomial extension of
R and 0 be the A-automorphism defined in Remark 1.3. Since substitution T=1
gives a retraction of R’ to R, it is enough to prove IR’ is generated by n
elements. Instead, we shall prove that 0(IR’) is generated by n elements.

We shall write I, =0(IR’), I'=1,nR[T] and J'=I,nR=I'nR.

As 0(J)=J is contained in J', it follows from (i) and (iii) that,

(iv) O(a,), ..., 0(a,) generate I, mod I}.

(v) For a prime ideal P in Spec(R’), if P contains

O(a)R +...+0(a,)R)+J'R

then P also contains I,.

For i=1 to n if we write f,=T"60(a,), for some suitable r;, then we can
assume that f is special monic in R[T] (because 6(a,) is doubly monic) and
fs--»f, belongs to TA[X,T]=TR[T]. Since T is a unit in R’, we can
replace f,, ..., f, in condition (iv) and (v).

As prime ideals in Spec(R[T7]) which contains T can not contain f;, it
follows immidiately from (iv) and (v) that

(@) fi--.,f, generate I' mod I'2.

(ii") For a prime ideal P in Spec(R[T]), if P contains
(fiR[T]+...+f,R[T])+J' R[T]

then P also contains I'.
(iii') f, is special monic in T and f,, ..., f, belongs to TR[T].
We are going to prove that I’ is generated by n elements in R[T]
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Consider the multiplicative set 1+J’ in R. Since J' is in the radical of R, ;.
and R, [T]/f, is integral extension of R, , ;.,, we have J' is also contained in
the radical of R, ;[T]/f;. In view of (ii') a maximal ideal of R, [T]/f;
which contains images of f,,...,f,, will also contain I"”, the image of I' in
R, ,;[T]/f;. And thus by (i') for a maximal ideal M of R, , [T]/f,, which
contains the image of f,,...,f,, we have I,, is generated by the images of
f2,...,f, and hence I" is generated by these elements. So it follows

' p=fR p[TI+...+f,R,  ,[T]

I/1+s=f1R1 +s[T] +... +fnR1 +s[T]9

Thus

for some s in J'.

We shall assume that s is not nilpotent (otherwise I’ is generated by n
elements).

As a consequence the following sequence

[T "1, ~0

0—-K—-R

1+s

is exact, where K is the kernel of the obvious surjection defined by fi, ..., f,.
As s belongs to I'. K, is projective and since f, is monic polynomial, by
Quillen-Suslin Theorem ([8], Theorem 3/[9], Theorem 1) K| is free of rank
n—1.

Since I, =R,[T] we have an exact sequence over R ,[T]

0K >R[T]— 120, 1 0

where the surjection is the obvious map defined by 1,0,...,0 and K’ is the
kernel of the surjection which is free.
Let us denote “mod T” by “bar”. Now as f;(0)=1, f,(0)=0, f,(0)=0, there

is an isomorphism g: K, — K/, , ; such that the following diagram

1,0,..,0) &
’R:(1+s) ’Is(1+s)"’

0-K:

1+s

0

is commutative, where the last and the middle vertical maps are identity.
Since K and K| ; are extended (infact free), there are isomorphisms

ﬂ: Ks_’Ks®Rs(l+s)[T] and A: K/1+s—*E’1+s®Rs(1+s)[T]
which are identity modulo T. If we write h=A"'o(g®Id)op, then h: K, > K

_ T p 1+s
is an isomorphism. Also h=/1"'ogof=g. Hence we have an isomorphism

h: K,— K, such that h=g.

1+s
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Using splittings of the surjections

Ry oylTT" =1 ,y—0 and Ry, [T]" 1, -0

s(1 +s)

which are equal “modulo T”, we can define an isomorphism
H: Rs(l -+-s)|:71]'l - Rs(l +s)[T]n

such that H=1d(mod T) and the following diagram

n f) ,
0—* Ks —“)Rs(l+s)[T] —_——‘—_&‘)Is(lﬁ-c) 0
h H 1d
"o
0—’K1+s~_w‘_—)Rs(1+s)[T] “—)IS(I-FS) -0

is commutative.
As Rs+ R(1+5s)=R, we can construct the following fibre product diagram,

|
| i |
| | |
| © | | 0
| [ l
| | |
l |
b |
Rhs 71" _‘{I'_—_’Rs(hs)“.] _-_—’Rs(hs)[.r]n!
(f;) | \ \ |l
Ihs _____ s(1osl === 5(105)
0 O 0

In this diagram Q is the fibre product of R,[T]" and R, ,[T]" given by the
maps

R,T]"-R,,.4[T]" and
Rl+s[T]n _>Rs(1 +s)[T]n —)Rs(1+s)[T]"'

The map Q »I' -0 is got by the property of fibre product.
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If g Q,——R,([T]" and g": Q, ,—— R, ,[T]" are the obvious isomor-
phisms, then (g'),, ,o(g"~"'),=H=1d (mod T). Hence by ([7], Sect. II, Lemma 2)
Q is free of rank n.

Since upper right hand and lower left hand sequences in the diagram are
exact, we see that Q —»I' >0 is exact. Thus I’ is generated by n elements and
hence (IR")=1, =17} is generated by n elements. This completes the proof of
Theorem 1.2 as indicated before.

Corollary 1.5. Suppose R=A[X,, ..., X,] is a polynomial ring in n variables over
a commutative noetherian ring A. If I is an ideal in R with

height (I)>dim A4 and p(I/1)2dim(R/I)+2 then u(I)=pu(I/I?).

Proof. As height(I)>dim 4, by a change of variables we can assume I contains
a monic polynomial and hence the corollary follows immediately from Theo-
rem 1.2.

Corollary 1.5 settles our question ([4], Chapter III, Remark 2.6) affir-
matively. This result was proved by S.M. Bhatwadekar and R.A. Rao ([2],
Theorem 1) when A4 is affine domain.

2. In Laurent polynomial rings

Main result in this section is Theorem 2.2. This theorem is a consequence of
Theorem 2.1, which is the Laurent polynomial analogue of Theorem 1.2.

Recall that a Laurent polynomial f in A[T, T~'] is called a doubly monic
Laurent polynomial if both the coefficients of the highest degree term and the
lowest degree term in f are equal to one.

Theorem 2.1. Let R=A[T, T~'] be a Laurent polynomial ring over a com-
mutative noetherian ring A in one variable T. Suppose I is an ideal of R, which
contains a doubly monic Laurent polynomial. If p(I/I*)2dim(R/I)+2 then u(I)
=u(1/1?).

Proof. Write I'=1nA[T] and J=AnNI. Since I contains a doubly monic
Laurent polynomial, I’ contains special monic.

Suppose ay, ...,a, form a minimal set of generators of ImodI? where n
=u(I/I*). We can assume da,, ...,d, belongs to I’ and with the help of a special
monic in I’ we can further assume a; is a special monic polynomial. We shall
see that a,, ...,a, generates I'mod I’ It is enough to see that for every prime
ideal P of A[T7], (I'/I'*), is generated by these elements. If T belongs to P then
a, does not belong to P and hence (I'/I'*),=0. If T does not belong to P, then
(I")p=(I)p,. and hence (I'/T'?), is generated by ay, ...,a,. Hence it follows that
p/1?)=p(I'/I'?).

Now as both R/I and A[T]/I' are integral extensions of A/J, we have
dim (R/I)=dim(A4/J)=dim(A[T]/I").
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Thus
u(I'/I'H=p(I/1?)2dim (R/I)+2=dim (A[T]/I') + 2.

Therefore by an application of Theorem 1.2 we get

pI)=p(l'/1' %)= p(1/12).
Hence u(I) < u(I/I%). Thus the proof is complete.

Theorem 2.2. Let R=A[X,,...,X,, T, ..., '] with n, r20 be a Laurent
polynomial ring in several variables over a commutative noetherian ring A.
Suppose I is an ideal of R with height (I)>dim A and u(I/1*)=dim (R/I)+2.
Then u(I)= u(I/1?).

Proof. For r=0 it is Corollary 1.5. If =1 then it is a immediate consequence
of Theorem 2.1 and the following lemma.

Lemma 23. Let R=A[X,,...,X,, T, ..., T*'] with n=0 and r=1 be a
Laurent polynomial ring in several variables over a commutative noetherian ring
A. Given any ideal I of R with height(I)>dim A, there is an A-automorphism
0: R — R such that, 0(I) contains a doubly monic Laurent polynomial in T,.

For n=0 this is a result of Suslin ([10], 7, Lemma 7.1). In [4] we have
given an example ([4], Chapter III, Remark 2.5) to show that such a Lemma is
not available for polynomial rings i.e. if I is an ideal of R=A[X, ..., X,] with
height(I)>dim A4, then I need not contain a special monic via any change of
variables.

With this we coclude this section and the proof of Lemma 2.3 will be given
in the next Sect. (3).

3. The proof of Lemma 2.3

First we shall set up some notations.

If R=A[T] (resp. A[T,T~']) is a polynomial ring (resp. Laurent poly-
nomial ring) in one variable T over a commutative ring 4 and I is an an ideal
of R then L (I) denotes the ideal of A4, consisting of coefficients of the highest
degree term in T of elements in I. Similarly for an ideal I of R=A[T, T~ '],
L, .(I) will denote the ideal of A, consisting of coefficients of the lowest degree
term in T of the elements of I. In the case of Laurent polynomial rings R
=A[X,,....X,, T{',...,T,*'] in several variables, when we write Ly (I),
Ly (I) or Ly-:(I), we mean R is considered as a polynomial or a Laurent
polynomial ring over the rest of the variables and the notations are used in the
above sence.

There is a well known result ([1], 4, Lemma 2) which says that if R=A[T]
is a polynomial ring and I an ideal of R, then height (L,(I))=height(I). The
following is a easy consequence of this.
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Lemma 3.1. Let R=A[T,T~'] be a Laurent polynomial ring over a com-
mutative noetherian ring A and I an ideal of R. Then height (L (I)) = height (I)
and height (Ly-.(I)) = height (I).

Proof. 1t is enough to prove one of the inequalities. We prove the first one.
Write J=INA[T]. Then height(J)=height(I) and L;(J)=L;(I). Hence
height (L (I)) = height (I) by ([1], 4, Lemma 2).

Now we are ready to prove Lemma 2.3.

Proof of Lemma 2.3. The proof is by induction in two stages. First we prove
the Lemma for r=1 by induction on n and then use induction on r to
complete the proof.

Proof of the Lemma when r=1, ie. R=A[X,,...,X,, T, T~']. If n=0 then R
=A[T, T~'] and in view of Lemma 3.1 we have L (I)=L,_,(I)=A. So we see
that I contains an element f which is monic in T and an element g which is
monic in T-!. We can combine f and g suitably to get a doubly monic
Laurent polynomial in I.

Assume now r=1 and n>0. We are going to use induction on n to
complete the proof in this case. We have R=A[X,, ..., X,, T, T~']. Consider
the ideal Ly (I). We see that height(Ly (I))=height(I)>dim 4. Hence by in-
duction hypothesis we may assume (via an A-automorphism of A[X,..., X,
T, T-']) that Ly (I) contains a doubly monic Laurent polynomial f in T. In
fact we may assume f=T"+g1T""1+...+gp_1T+1 for some p=1 and g; in
A[X,,...,X,], i=1 to p—1. Let F(X,) be an element in I with f as the
coefficient of its highest degree term. Therefore F(X,)=fX%+f, X9 '+...
+f, for some g=1 and f; in A[X,,...,X, ,, T, T~'], for j=1to q. Let s>T-
degree and T~ !-degree of f; for j=1 to q. Define §: R—>R to be the 4-
automorphism given by 0(X;)=X,; for 15isn—1, 0(X,)=X,+T*+T~° and
0(T)=T. Then 6(F(X,)) is a doubly monic Laurent polynomial. This completes
the proof of the Lemma for r=1 and arbitrary n=0.

Proof of the lemma in the general case. Since we have proved the Lemma when
r=1 and n=0 arbitrary, here we shall apply induction on r to-complete the
proof.

Assume r>1 and n=0.

So we have R=A[X,,...,X,. T{*',..., T,*']. Look at the ideals L, (I) and
Ly..(I) of A[X,, ..., X,, T*, ..., T,£1]. Since height(I)>dim 4, by Lemma
3.1 both Ly (I) and L;..(I) have heights strictly greater than dimA and hence
height (L, (I)nLy-,(I))>dim A. By induction hypothesis (via an A-automor-
phism of A[X,,....,X,, TF',...,T 1), Ly (I)nL;..(I) contains a Laurent
polynomial f which is doubly monic in T,. We may write f=T+g, TP~ '+...
+g, 1Ty +1 for some p=1 and g; in A[X,,...,X,, T,*',..., T,£]]. So we can
find F and G in I such that F(T)=fT+f, T '+...+f,_ T,+f, and G(T))
=f+h,T+...+h,T" for some integers ¢, u=0 and f;, h; in A[X,,...,X,,
T ...,T.* ] fori=1to gand j=1 to u
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Let s> T,-degree of f; and T,”'-degree of h;, for i=1 to q and j=1 to u.
Define an A-automorphism 6: R — R as follows,

0(X)=X; for 1<i<n
NT)=T, for 1gigr—1
oT)=T,T} for i=r.

Then T,790(F) is monic in T, and 6(G) is monic in T,"! over the rest of the
variables. Hence a suitable linear combination H of T,796(F) and 6(G) can be
found which is doubly monic in T,. As H is an element of §(I), the proof of
Lemma 2.3 is complete.
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Oblatum 23-1V-1983

Note added in proof

R.A. Rao has shown how Remark 1.3 can be used to prove that if (f},..., f,) is a unimodular row
in a polynomial ring A[X] with f; a monic polynomial and n>3 then there is an elementary
matrix u which takes (f, ..., f,) to (1,0, ...,0).
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