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ABSTRACT. In this paper we consider an algebraic problem which was motivated by
a topological problem posed by Nori, about the homotopy of sections of projective
modules. We give an affirmative answer in the case of some local rings, namely when
the ring is a powerseries ring k[[X1, -, X,]] over 2 field k or when the ring is a
regular k-spot over an infinite perfect field k.

INTRODUCTION

The following is the algebraic analogue of a problem of Nori :

Suppose X = SpecA is a smooth affine variety of dim n. Let P be a projective
A-module of rank » and S : P — I be a surjective homomorphism from P onto an
ideal I of A. Assume that the zero set of I, V(I) = ¥ is a smooth affine subvariety
of dim n — r. Also suppose that Z = V(J) is a smooth closed subvariety of X x Al
= Spec(A[T]); where T is 2 variable, such that Z intersects X x 0 transversally in
Y x 0. Also suppose that ¢ : P[T] — J/J? (where P[T] denotes the tensor product
P @ A[T)) is a surjective map which is compatible with 5. The question of Nori is
whether there is a surjective map 1 : P[T] — J such that ¢|7—¢ = S and Y|z = @7
(See the appendix of [M]).

In [M], Mandal answers this affirmatively for the affine algebras, in the following
two cases :

1. rank P > dim A[T]/J + 2 and J contains a monic polynomial.
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2. J = IA[T] is a local complete intersection ideal of height > 2 and I/I? is free.
In fact, Mandal proves the following two theorems :

Theorem A. (See Theorem 2.1 of [M]).

Let R = A[T] be a polynomial ring ever o commutative noctherian ring A and let
I be an ideal of R that contains a monic polynomal. Suppose that P is a projective
A-module of rank P = v > dim R/I+2 and suppose that §: P — [y 15 a surjective
map, where Iy is the ideal {f(0) : f(T) € I}. Also suppose that o : P|T| — I/I?
is @ surjective map such that (0) = 5 mod IZ. Then there is a surjective map
Y P[T} — I such that ¢ lifts @ and $(0) = 5.

Theorem B. (Sec Theorem 2.9 of [M]).

Let B = A[T) be a polynomial ring over an affine algebra A over a field k and let
Iy be a smooth and locally complete intersection 1deal of height r > 2 in A with Iy} I}
free. Write I = )R and suppose P is a projective A-module of rank r = height Iy.
Let §: P — Iy be o surjective map and let ¢ : P|T] — I/I? be o surjective map
such that p(0) = S mod IZ. Then there is a surjective map ¢ - P[T] — I such
that (0) = S and v lifts .

Moreover, he asks if the condition on I that it contains a monic can be omitted?
Our investigations started in this direction.

In view of Bhatwadekar's example (see [B]) of height 2 maximal ideal in R[T],
where [ is a two dimensional normal ring, but not regular, which is not a complete
intersection, we assume that R is a regular ring.

When R is a local ring the problem can be stated as follows :

Problem. Suppose R is reguier local ring, I is an ideal of 4 = R[T]. Assume that
1. there ezist fi,--+ ,fr €I such that I=(fi, -, f )+ I*
2. there ezist ay, - ar € R such that 1(0) = {f(0): A(T) €I} =(ay, --,a. )R
S fl(0)=a; mod I(0)%, i=1,---,r
Then cen we find polynomaals Fy, - | F, € R[T) such that
4. I= (Flu‘ o 1F7')R[T]
5. F; = f; mod I*.
6. F5(0)=a;,i=1,---,r? £

In this paper, we give affirmative answer to this problem in the following two
cases:
a) when R is a powerseries ring k[[X:, -, X,]] over a field k.
b) when R is a regular k-spot over an infinite perfect field k.

THE RESULTS

In this section we discuss our main results on the problem stated in the Intro-
duction. Below we recall a definition and its easy consequence.
Definition : Let R be ating and R; be a subring of R. Let a # 0 be an element of
K such that o is not a zero divisor in R. We say Ry C R is an analytic isomorphism
elong e 1f Ry/aR) ~ R/aR.
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One can see easily that the above condition is equivalent to R = Ry + R and
aRN R, = oRy. Also observe that if R C Risan analytic isomorphism along
o then it is also an analytic 1somorphism along o™ for any posttive integer n and
By([T] C R[T) is also an analytic isomorphism along «. Below we state a proposition
whose proof is easy, for e.g. see [NJ.

Proposition 1. Let B be o ring and R be o subring of R. If I is an ideal in R,
let I, = INR;. Suppose that H1 C R is an analytic womorphism along a for some
a €1, Then

1 Ry/I ~R/I

2. I=LR

5. /1Y and I/I? are isomorphic as Ri/I or RfI- modules. O

Now we prove the result which deals with the ring of powerseries,

Theorem 2. Let k be a field and R = El[X1,--- , X,)] be the powerseries Ting over
k wn n varigbles. Let A = R[T) and I be an ideal of height > 2 in A and et r
be an integer such that r 2 dim AfT + 2. Suppose that there ezist polynomials
Sioooo  fe in A such that T = (s fe)+ I? and ay, - ,a, in R such that
I(0) = (ay, - - var )R oand f,(0) = a; mod I(0)? fori=1,-- 7. Then we can find
polynomials Fy,--- | F, € R[T] such that

LI=(FR, - F)

2. Fi=f; mod I?

g Fy(0) = q; fori=1.-r

Proof. Look at the ideal TNR C R Asht INKE > 1, there exists « NON-Zero non-unit,
say ag, in I N R. We can write, after a change of variables, if NeCessary, a; = u;oy
(i=0,1,-- ,7) where u; is a unit in R and a; is a Weierstrass polynomial in X,
Replacing f; by u;'f; and a; by u'a;, we can assume that a; is 2 Weierstrass
polynomial in X, for all 7 and hence Q0.81, - ,ar € R{[X,, - Aaa]][Xa). Also
fi=aoa1 € INR is a Weierstrass polynomial in X,

Let Ry = k[[Xq,: - A rn-1]] and look at the ideal L =1In R [X,,T]. As
Iy N Ry [X ] contains a Weierstrass polynomial, namely, fy we get that R, (Xa] = R
Is an analytic isomorphism along f (see [ZS]), and hence along f? also. Moreover
Ry[X,,T) — R[T] is an analytic isomorphism along f. Then, by Proposition 1
above, we have
2 R[X,, 7/ ~ R[T)/I
3. L2~ I/

As I /I and I/1?% are 1somorphic, we can get some gy1,--- , g, € I; such that g
corresponds to f; under this isomorphism. Thus g; — fi € I*. Hence gi(0) - £:(0) €
1(0)?, ie., ¢:(0) = a; mod I(0)?.

Claim : I1(0) = (ay, - -- ar )Ry [ X o]

To see this, let a € I (0). Then a = 2 i) aig; for some o; € R. Writing «; as
a; = 7; + g f with r; € ’[X5), ¢: € R, we have q = ZLI ria; +)::'=] g:ifa; =
>ora; + f3 qia;. This implies a — 3 ria; € fRNR[X,.] = fR, [X.]. Hence
a € ) a;Ri[X,], since f € {(a7).
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Now look at the linear change of variables given by X, — X, +T and T — T
on Ri[X,,T). Note that f{X, +T)1s a monicin T in R, [X,,T)].

Now applying Mandal’s theorem (Theorem 2.1, [M]) to I} € Ri[X,.,T] we get
Gy, -+, G, such that

I =(Gy,-,G;)

Gi=g; modI2,i=1,---,r

Gi{0) = a;.

Hence G; = fi mod I? and [ = (G1, -+ ,G,). O

Theorem 3. Let k be a field end f(X;) € k[X1] be a monic irreducible polynomial
such that D = k[X)]|sx,) has infinite residue field. Let R = k[X,, - Xa|lu
where M 15 the mazimal ideal (f(X1), X2, -, Xg). Let I be an deal of A := R[T)
of height > 4 and let v be an integer such that r > dwim A/l + 2. Suppose that
we are given fi,- ,fr € A such that I = (f,- ,fr)+I* and ay, - ,a, € R
such that I(0) = (a1, ,a,)R. Moreover assume that f;(0) = a; mod I(0)? for
1=1,---,r. Then we can find Fy, -, Fr € I such that

1. I = (B e 5B

2 F{ = fi mod I2

3. Fi(0) =a;.

Proof. Let I; = I N R. First observe that after multiplying with units, if necessary,
we can assume that a1, -+ ,a. € k[Xy, -+, X4].

Write R as D[Xg, :Xli](’?r,X2,"',X.{) where D = k[XI]{f(Xx)) is a d.v.r. with
uniformising parameter 7 = f(X;). Asht [ =ht IN R > 3, I; contains a form,
say [", which represents a unit in D (see [N]). Let By = Dj[X;] where D; =
D[X3, -+, Xal(n x5, x,)- Then there exists a monic polynomial, say, g in BiNFR
such that By — R is an analytic isomorphism along g (see [L],[N]). Also note that
geE I].

Thus By = Dy[X3] = R = D[X2,--- , Xd](n X, x,) 15 an analytic isomorphism
along g where g is a monic (in Xy)in B1 N FBy. Asge I, g € I, N By. After the
linear change of variables X — X;+T and T +— T on D;[X32,T], g, which is a monic
in the variable Xy in I;, becomes a monic in the variable T and g € I' := I N B, [T].
Now as I/I? and I'/I'® are isomorphic we can construct g;,--- ,g, in B[T] =
D, [X3,T] such that f; corresponds to g; under the above isomorphism. Therefore
gi — fi € I? and hence g;(0) — £;(0) € I(0)?, i.e., g:(0) = a; mod I{0). Recall that
I(0) is generated by {ai, - ,a;} in R.

Claim : I;(0) is generated by {a1,--- ,a,} in B;.

Proof of this claim is same as the proof of the claim in Theorem 2 and hence we
omit the proof.

Thus we have an ideal I' in B,[T] = D, [X,, T] containing a monic polynomial, g,
inTand g1, -, gr € By[T] such that I' = 37, B1[T)g: + 12, I'(0) = (a1, ,ar)
in By and g;(0) = a; mod /(0)?. Applying Mandal’s theorem (2.1 of [M]) in the
above situation we get Gy, -+, G, in By[T] such that I' = (G,, -+ ,G,), G; = ¢

mod I'* and G;(0) = a;. Hence G; = f; mod I? and I = (Gy,--- ,Gy). 0

Now we state a theorem which is a consequence of the above theorem. First we
recall a definition.
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By a regular spot over a field k, we mean a localization Ry of a finitely generated
k-algebra R at a regular prime p € Spce R, ie., £ is a regular local ring,

Theorem 4. Let A be a regular k-spot where k is an wnfinite perfect field. Let
I € A[T) be an ideal of height > 4 and let r be an integer such that r > dim
A/I+ 2. Assume that

LI=(fi, o fo)+ I for some fiyo oo\, € AIT]
2 I(0) = (ay, -+ ,a,) for some ay, - ,a, € A

I f(0)=a; mod I{(0)® fori=1,---,r

4. Moreover, I(0) 1s a complete intersection of height r or I(0) = A.

Then there esist Fy,--- , F; € A[T] satisfying
5 I=(F, | F)
6. F; = f; mod I? and
7. Fi(0)=q; fori=1, - 7.

Proof. Since k is perfect, by ([BR], Proposition), there exists a field K O & and
a regular K-spot Ag such that Ay = K[X;, - s Xal(£(x1), %5, xa) and Ag — A
is an analytic isomorphism along ko for some hy € I N Ap. Put h = hZ Let
Iy = 1IN Ag[T]. Then note that 2 € I;(0)2. Moreover, we have

. I=LA[T)

AT/ L =~ A T)/T

L/ ~1/1

I(0) = I, (M)A

- Ao/ (0) =~ AJI{0)

S I0)N Ag = I, (0)

L(0)/ 1 (0)? =~ I(0)/I(0)?

I(0) N Ap = L(0)%

Observe that (1) -~ (3) follow from the properties of analytic isomorphism and
(4) follows from (1).

(5). To prove Ay/I;(0) and A/I{0) are isomorphic, first observe that the natural
map Ag/L1(0) — A/I(0) is surjective. To prove injectivity, let € 4y NI{0). Then
there exists f € I such that f(0) = z. Write f = (D) =z4+a T+ + a7,
for some a; € A for ¢ > 0. Then a; can be written as a; = b; + Ak for some
bi € Ao, Ai € A Then f(T) = (x + b, T+ - + b,T) + Ao+ 0T+ + MTH =
9(T) + hg1(T) where g(T) € I and ¢,(T) € A[T]. This implies that z = ¢(0) €

(6) is clear.

(7). To prove that I1(0)/1,(0)? is isomorphic to I{0)/I(0)* first note that the
natural map 1,(0)/1;(0)® — I(0)/I(0)? is surjective. To prove the injectivity, let
z € [(0) NI(0)*. Thenz =3 7", zy; = S(a? + AR)(y] + pih) = T 290 + hs
implies z — 3" z¥y) € hAN Ay = h4y € [;(0)? and hence z € 1, (0)2.

(8). To prove I{0)2 N Ay = I;(0)2.

Clearly we have I; (0)? C I{0)?NAdy. Let z € I(0)’NA4y. Writing z = T Ty =
2zl + Mh) (Yl + pik) = T 2lyl + kA where A € A and 2riy € L{0)? we get
r—Y aiyl € hRANAy=hdo C I{0)? and hence z € 1,(0)2.

_-]CJ')CJ’|>A_OJ!\.'>)—-|

&
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Let b; € I,{0) be such that b; = a; mod I(0)*. Then there is a matrix, say

b] ai
a, in M;(A) such that ( ) = c\f( ©|. Since I{0)/I{0)? is free of rank r,

b a,

det o is equivalent to a unit modulo I(0) and hence deta is a unit in A itself.
¥} h £ (0) £(0)

So, a € GL(A). Let =a|  |. Then =« =
F fr F.(0) +(0)

mod I(0)%. Now let H; € I; be such that H; — F; € I?. Then

T

Hl((} fb ={H: (0) Fi(0))+ (Fi(0) = b)) € 1{0)* N Ay = I;(0)%. Now observe that

1) I=(H, - H)+I
2) L= (H, - H)+ 1
3) 13{03 = (b1, , br)

)

=

H;(0) =b; mod L{0)? by (8) above.

Now applying Theorem 3 above, to I} € Ag[T] we get G1,--- |G, € I such that
5) I = (G, - ,Gr)A[T)

6) G; = H; mod If

7) Gi(0) =b;
G3 Gy
Now write ! =a 1| ¢ |. Thensince I = (G4, -+ ,G.)A[T], we have
Gx Gr
G1(0) G1(0) by a
I=(G7,- ,GHAT]. Also =™} =g k| § = &
Gz(0) G.(0) b, a,
G Gy Hy B h
Further =i =t S =) 2 [ O
en B H, ol £
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